Merge pull request #377 from telephone001/euler_to_quat_lh

This commit is contained in:
Recep Aslantas
2023-12-30 21:31:28 +03:00
committed by GitHub
9 changed files with 1020 additions and 38 deletions

View File

@@ -0,0 +1,495 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#include "test_common.h"
#include "../../include/cglm/handed/euler_to_quat_lh.h"
TEST_IMPL(GLM_PREFIX, euler_xyz_quat_lh) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f,-1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in xyz order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_euler_xyz_quat_lh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in xyz order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
/* use my function to get the quaternion */
glm_euler_xyz_quat_lh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_xzy_quat_lh) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f,-1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in xzy order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_euler_xzy_quat_lh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in xzy order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
/* use my function to get the quaternion */
glm_euler_xzy_quat_lh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_yxz_quat_lh) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f,-1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in yxz order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_euler_yxz_quat_lh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in yxz order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
/* use my function to get the quaternion */
glm_euler_yxz_quat_lh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_yzx_quat_lh) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f,-1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in yzx order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_euler_yzx_quat_lh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in yzx order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
/* use my function to get the quaternion */
glm_euler_yzx_quat_lh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_zxy_quat_lh) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f,-1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in zxy order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_euler_zxy_quat_lh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in zxy order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
/* use my function to get the quaternion */
glm_euler_zxy_quat_lh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_zyx_quat_lh) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f,-1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in zyx order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_euler_zyx_quat_lh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in xyz order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
/* use my function to get the quaternion */
glm_euler_zyx_quat_lh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}

View File

@@ -40,6 +40,7 @@
#include "test_cam_rh_no.h"
#include "test_cam_rh_zo.h"
#include "test_euler_to_quat_rh.h"
#include "test_euler_to_quat_lh.h"
#undef GLM
#undef GLM_PREFIX
@@ -78,6 +79,7 @@
#include "test_cam_rh_no.h"
#include "test_cam_rh_zo.h"
#include "test_euler_to_quat_rh.h"
#include "test_euler_to_quat_lh.h"
#undef GLM
#undef GLM_PREFIX