mirror of
https://github.com/recp/cglm.git
synced 2025-10-04 01:00:46 +00:00
added tests for euler_to_quat_lh. Currently they don't have any euler->mat4->quat tests because there is no left handed version of those. But I could try to find a way to change it
This commit is contained in:
521
test/src/test_euler_to_quat_lh.h
Normal file
521
test/src/test_euler_to_quat_lh.h
Normal file
@@ -0,0 +1,521 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "test_common.h"
|
||||
#include "../../include/cglm/handed/euler_to_quat_lh.h"
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_xyz_quat_lh) {
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f,-1.0f};
|
||||
|
||||
/* random angles for testing */
|
||||
vec3 angles;
|
||||
|
||||
/* quaternion representations for rotations */
|
||||
versor rot_x, rot_y, rot_z;
|
||||
|
||||
versor expected;
|
||||
versor result;
|
||||
versor tmp;
|
||||
|
||||
mat4 expected_mat4;
|
||||
|
||||
/* 100 randomized tests */
|
||||
for (int i = 0; i < 100; i++) {
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/* create the rotation quaternions using the angles and axises */
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/* apply the rotations to a unit quaternion in xyz order */
|
||||
glm_quat_identity(expected);
|
||||
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_x, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_y, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_z, expected);
|
||||
|
||||
glm_euler_xyz_quat_lh(angles, result);
|
||||
|
||||
/* verify if the magnitude of the quaternion stays 1 */
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
/* verify that it acts the same as rotating by 3 axis quaternions */
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
|
||||
|
||||
/* Start gimbal lock tests */
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
angles[0] = x;
|
||||
angles[1] = y;
|
||||
angles[2] = z;
|
||||
|
||||
/* create the rotation quaternions using the angles and axises */
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/* apply the rotations to a unit quaternion in xyz order */
|
||||
glm_quat_identity(expected);
|
||||
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_x, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_y, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_z, expected);
|
||||
|
||||
/* use my function to get the quaternion */
|
||||
glm_euler_xyz_quat_lh(angles, result);
|
||||
|
||||
/* verify if the magnitude of the quaternion stays 1 */
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
/* verify that it acts the same as rotating by 3 axis quaternions */
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
}
|
||||
}
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_xzy_quat_lh) {
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f,-1.0f};
|
||||
|
||||
/* random angles for testing */
|
||||
vec3 angles;
|
||||
|
||||
/* quaternion representations for rotations */
|
||||
versor rot_x, rot_y, rot_z;
|
||||
|
||||
versor expected;
|
||||
versor result;
|
||||
versor tmp;
|
||||
|
||||
/* 100 randomized tests */
|
||||
for (int i = 0; i < 100; i++) {
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/* create the rotation quaternions using the angles and axises */
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/* apply the rotations to a unit quaternion in xzy order */
|
||||
glm_quat_identity(expected);
|
||||
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_x, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_z, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_y, expected);
|
||||
|
||||
glm_euler_xzy_quat_lh(angles, result);
|
||||
|
||||
/* verify if the magnitude of the quaternion stays 1 */
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
/* verify that it acts the same as rotating by 3 axis quaternions */
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
|
||||
|
||||
/* Start gimbal lock tests */
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
angles[0] = x;
|
||||
angles[1] = y;
|
||||
angles[2] = z;
|
||||
|
||||
/* create the rotation quaternions using the angles and axises */
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/* apply the rotations to a unit quaternion in xzy order */
|
||||
glm_quat_identity(expected);
|
||||
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_x, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_z, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_y, expected);
|
||||
|
||||
/* use my function to get the quaternion */
|
||||
glm_euler_xzy_quat_lh(angles, result);
|
||||
|
||||
/* verify if the magnitude of the quaternion stays 1 */
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
/* verify that it acts the same as rotating by 3 axis quaternions */
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
}
|
||||
}
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_yxz_quat_lh) {
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f,-1.0f};
|
||||
|
||||
/* random angles for testing */
|
||||
vec3 angles;
|
||||
|
||||
/* quaternion representations for rotations */
|
||||
versor rot_x, rot_y, rot_z;
|
||||
|
||||
versor expected;
|
||||
versor result;
|
||||
versor tmp;
|
||||
|
||||
/* 100 randomized tests */
|
||||
for (int i = 0; i < 100; i++) {
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/* create the rotation quaternions using the angles and axises */
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/* apply the rotations to a unit quaternion in yxz order */
|
||||
glm_quat_identity(expected);
|
||||
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_y, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_x, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_z, expected);
|
||||
|
||||
glm_euler_yxz_quat_lh(angles, result);
|
||||
|
||||
/* verify if the magnitude of the quaternion stays 1 */
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
/* verify that it acts the same as rotating by 3 axis quaternions */
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
|
||||
/* verify that it acts the same as glm_euler_by_order */
|
||||
glm_euler_by_order(angles, GLM_EULER_YXZ, expected_mat4);
|
||||
glm_mat4_quat(expected_mat4, expected);
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
|
||||
}
|
||||
|
||||
|
||||
/* Start gimbal lock tests */
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
angles[0] = x;
|
||||
angles[1] = y;
|
||||
angles[2] = z;
|
||||
|
||||
/* create the rotation quaternions using the angles and axises */
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/* apply the rotations to a unit quaternion in yxz order */
|
||||
glm_quat_identity(expected);
|
||||
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_y, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_x, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_z, expected);
|
||||
|
||||
/* use my function to get the quaternion */
|
||||
glm_euler_yxz_quat_lh(angles, result);
|
||||
|
||||
/* verify if the magnitude of the quaternion stays 1 */
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
|
||||
/* verify that it acts the same as glm_euler_by_order */
|
||||
glm_euler_by_order(angles, GLM_EULER_YXZ, expected_mat4);
|
||||
glm_mat4_quat(expected_mat4, expected);
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
|
||||
}
|
||||
}
|
||||
}
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_yzx_quat_lh) {
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f,-1.0f};
|
||||
|
||||
/* random angles for testing */
|
||||
vec3 angles;
|
||||
|
||||
/* quaternion representations for rotations */
|
||||
versor rot_x, rot_y, rot_z;
|
||||
|
||||
versor expected;
|
||||
versor result;
|
||||
versor tmp;
|
||||
|
||||
/* 100 randomized tests */
|
||||
for (int i = 0; i < 100; i++) {
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/* create the rotation quaternions using the angles and axises */
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/* apply the rotations to a unit quaternion in yzx order */
|
||||
glm_quat_identity(expected);
|
||||
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_y, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_z, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_x, expected);
|
||||
|
||||
glm_euler_yzx_quat_lh(angles, result);
|
||||
|
||||
/* verify if the magnitude of the quaternion stays 1 */
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
/* verify that it acts the same as rotating by 3 axis quaternions */
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
|
||||
/* verify that it acts the same as glm_euler_by_order */
|
||||
glm_euler_by_order(angles, GLM_EULER_YZX, expected_mat4);
|
||||
glm_mat4_quat(expected_mat4, expected);
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
|
||||
}
|
||||
|
||||
|
||||
/* Start gimbal lock tests */
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
angles[0] = x;
|
||||
angles[1] = y;
|
||||
angles[2] = z;
|
||||
|
||||
/* create the rotation quaternions using the angles and axises */
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/* apply the rotations to a unit quaternion in yzx order */
|
||||
glm_quat_identity(expected);
|
||||
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_y, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_z, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_x, expected);
|
||||
|
||||
/* use my function to get the quaternion */
|
||||
glm_euler_yzx_quat_lh(angles, result);
|
||||
|
||||
/* verify if the magnitude of the quaternion stays 1 */
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
|
||||
/* verify that it acts the same as glm_euler_by_order */
|
||||
glm_euler_by_order(angles, GLM_EULER_YZX, expected_mat4);
|
||||
glm_mat4_quat(expected_mat4, expected);
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
|
||||
}
|
||||
}
|
||||
}
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_zxy_quat_lh) {
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f,-1.0f};
|
||||
|
||||
/* random angles for testing */
|
||||
vec3 angles;
|
||||
|
||||
/* quaternion representations for rotations */
|
||||
versor rot_x, rot_y, rot_z;
|
||||
|
||||
versor expected;
|
||||
versor result;
|
||||
versor tmp;
|
||||
|
||||
/* 100 randomized tests */
|
||||
for (int i = 0; i < 100; i++) {
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/* create the rotation quaternions using the angles and axises */
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/* apply the rotations to a unit quaternion in zxy order */
|
||||
glm_quat_identity(expected);
|
||||
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_z, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_x, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_y, expected);
|
||||
|
||||
glm_euler_zxy_quat_lh(angles, result);
|
||||
|
||||
/* verify if the magnitude of the quaternion stays 1 */
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
/* verify that it acts the same as rotating by 3 axis quaternions */
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
|
||||
|
||||
/* Start gimbal lock tests */
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
angles[0] = x;
|
||||
angles[1] = y;
|
||||
angles[2] = z;
|
||||
|
||||
/* create the rotation quaternions using the angles and axises */
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/* apply the rotations to a unit quaternion in zxy order */
|
||||
glm_quat_identity(expected);
|
||||
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_z, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_x, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_y, expected);
|
||||
|
||||
/* use my function to get the quaternion */
|
||||
glm_euler_zxy_quat_lh(angles, result);
|
||||
|
||||
/* verify if the magnitude of the quaternion stays 1 */
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
/* verify that it acts the same as rotating by 3 axis quaternions */
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
}
|
||||
}
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_zyx_quat_lh) {
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f,-1.0f};
|
||||
|
||||
/* random angles for testing */
|
||||
vec3 angles;
|
||||
|
||||
/* quaternion representations for rotations */
|
||||
versor rot_x, rot_y, rot_z;
|
||||
|
||||
versor expected;
|
||||
versor result;
|
||||
versor tmp;
|
||||
|
||||
/* 100 randomized tests */
|
||||
for (int i = 0; i < 100; i++) {
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/* create the rotation quaternions using the angles and axises */
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/* apply the rotations to a unit quaternion in zyx order */
|
||||
glm_quat_identity(expected);
|
||||
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_z, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_y, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_x, expected);
|
||||
|
||||
glm_euler_zyx_quat_lh(angles, result);
|
||||
|
||||
/* verify if the magnitude of the quaternion stays 1 */
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
/* verify that it acts the same as rotating by 3 axis quaternions */
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
|
||||
|
||||
/* Start gimbal lock tests */
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
angles[0] = x;
|
||||
angles[1] = y;
|
||||
angles[2] = z;
|
||||
|
||||
/* create the rotation quaternions using the angles and axises */
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/* apply the rotations to a unit quaternion in xyz order */
|
||||
glm_quat_identity(expected);
|
||||
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_z, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_y, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(tmp, rot_x, expected);
|
||||
|
||||
/* use my function to get the quaternion */
|
||||
glm_euler_zyx_quat_lh(angles, result);
|
||||
|
||||
/* verify if the magnitude of the quaternion stays 1 */
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
/* verify that it acts the same as rotating by 3 axis quaternions */
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
}
|
||||
}
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
|
46
test/tests.h
46
test/tests.h
@@ -363,9 +363,31 @@ TEST_DECLARE(clamp)
|
||||
TEST_DECLARE(glm_euler_xyz_quat_rh)
|
||||
TEST_DECLARE(glm_euler_xzy_quat_rh)
|
||||
TEST_DECLARE(glm_euler_yxz_quat_rh)
|
||||
TEST_DECLARE(glm_euler_yzx_quat_rh)
|
||||
TEST_DECLARE(glm_euler_yzx_quat_rh)
|
||||
TEST_DECLARE(glm_euler_zxy_quat_rh)
|
||||
TEST_DECLARE(glm_euler_zyx_quat_rh)
|
||||
|
||||
TEST_DECLARE(glm_euler_xyz_quat_lh)
|
||||
TEST_DECLARE(glm_euler_xzy_quat_lh)
|
||||
TEST_DECLARE(glm_euler_yxz_quat_lh)
|
||||
TEST_DECLARE(glm_euler_yzx_quat_lh)
|
||||
TEST_DECLARE(glm_euler_zxy_quat_lh)
|
||||
TEST_DECLARE(glm_euler_zyx_quat_lh)
|
||||
|
||||
TEST_DECLARE(glmc_euler_xyz_quat_rh)
|
||||
TEST_DECLARE(glmc_euler_xzy_quat_rh)
|
||||
TEST_DECLARE(glmc_euler_yxz_quat_rh)
|
||||
TEST_DECLARE(glmc_euler_yzx_quat_rh)
|
||||
TEST_DECLARE(glmc_euler_zxy_quat_rh)
|
||||
TEST_DECLARE(glmc_euler_zyx_quat_rh)
|
||||
|
||||
TEST_DECLARE(glmc_euler_xyz_quat_lh)
|
||||
TEST_DECLARE(glmc_euler_xzy_quat_lh)
|
||||
TEST_DECLARE(glmc_euler_yxz_quat_lh)
|
||||
TEST_DECLARE(glmc_euler_yzx_quat_lh)
|
||||
TEST_DECLARE(glmc_euler_zxy_quat_lh)
|
||||
TEST_DECLARE(glmc_euler_zyx_quat_lh)
|
||||
|
||||
TEST_DECLARE(euler)
|
||||
|
||||
/* ray */
|
||||
@@ -1385,6 +1407,28 @@ TEST_LIST {
|
||||
TEST_ENTRY(glm_euler_yzx_quat_rh)
|
||||
TEST_ENTRY(glm_euler_zxy_quat_rh)
|
||||
TEST_ENTRY(glm_euler_zyx_quat_rh)
|
||||
|
||||
TEST_ENTRY(glm_euler_xyz_quat_lh)
|
||||
TEST_ENTRY(glm_euler_xzy_quat_lh)
|
||||
TEST_ENTRY(glm_euler_yxz_quat_lh)
|
||||
TEST_ENTRY(glm_euler_yzx_quat_lh)
|
||||
TEST_ENTRY(glm_euler_zxy_quat_lh)
|
||||
TEST_ENTRY(glm_euler_zyx_quat_lh)
|
||||
|
||||
TEST_ENTRY(glmc_euler_xyz_quat_rh)
|
||||
TEST_ENTRY(glmc_euler_xzy_quat_rh)
|
||||
TEST_ENTRY(glmc_euler_yxz_quat_rh)
|
||||
TEST_ENTRY(glmc_euler_yzx_quat_rh)
|
||||
TEST_ENTRY(glmc_euler_zxy_quat_rh)
|
||||
TEST_ENTRY(glmc_euler_zyx_quat_rh)
|
||||
|
||||
TEST_ENTRY(glmc_euler_xyz_quat_lh)
|
||||
TEST_ENTRY(glmc_euler_xzy_quat_lh)
|
||||
TEST_ENTRY(glmc_euler_yxz_quat_lh)
|
||||
TEST_ENTRY(glmc_euler_yzx_quat_lh)
|
||||
TEST_ENTRY(glmc_euler_zxy_quat_lh)
|
||||
TEST_ENTRY(glmc_euler_zyx_quat_lh)
|
||||
|
||||
TEST_ENTRY(euler)
|
||||
|
||||
/* ray */
|
||||
|
Reference in New Issue
Block a user