mirror of
https://github.com/recp/cglm.git
synced 2025-12-25 04:44:58 +00:00
use Ken Shoemake's algorithm (gemsiv/euler_angle)
this must be more robust and flexible api
This commit is contained in:
@@ -18,24 +18,168 @@
|
||||
enum glm_euler_seq
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE glm_euler_seq glm_euler_order(int newOrder[3]);
|
||||
CGLM_INLINE void glm_euler_angles(mat4 m, vec3 dest);
|
||||
CGLM_INLINE void glm_euler(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_xyz(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_zyx(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_zxy(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_xzy(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_yzx(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_yxz(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_by_order(vec3 angles,
|
||||
glm_euler_seq ord,
|
||||
mat4 dest);
|
||||
CGLM_INLINE glm_eul_mat4(vec3 ea, int order, mat4 dest)
|
||||
*/
|
||||
|
||||
#ifndef cglm_euler_h
|
||||
#define cglm_euler_h
|
||||
|
||||
#include "common.h"
|
||||
#include "util.h"
|
||||
|
||||
/* ---------- Notice for Ken Shoemake's algorithm Implementation -------------*
|
||||
| Ken Shoemake's algorithm impl. is taken from this repo by permission: |
|
||||
| https://github.com/erich666/GraphicsGems/blob/master/gemsiv/euler_angle |
|
||||
| |
|
||||
| cglm doesn't claim the ownership of GraphicsGems source codes |
|
||||
| and the algorithm itself. But cglm may change variable names or some piece |
|
||||
| of codes in order to apply optimizations or to make it usable in cglm. |
|
||||
| The ownership of improvements |
|
||||
| |
|
||||
| Related issue: https://github.com/recp/cglm/issues/30 |
|
||||
| |
|
||||
* -------------------------- GraphicsGems EULA ----------------------------- *
|
||||
| Related EULA for GraphicsGems can be found at and below, plus in CREDITS: |
|
||||
| http://www.realtimerendering.com/resources/GraphicsGems/ |
|
||||
| |
|
||||
| EULA: The Graphics Gems code is copyright-protected. In other words, you |
|
||||
| cannot claim the text of the code as your own and resell it. Using the |
|
||||
| code is permitted in any program, product, or library, non-commercial or |
|
||||
| commercial. Giving credit is not required, though is a nice gesture. |
|
||||
| The code comes as-is, and if there are any flaws or problems with any Gems |
|
||||
| code, nobody involved with Gems - authors, editors, publishers, or |
|
||||
| webmasters - are to be held responsible. Basically, don't be a jerk, and |
|
||||
| remember that anything free comes with no guarantee. |
|
||||
* -------------------------------- END --------------------------------------*/
|
||||
|
||||
/* Order type constants, constructors, extractors
|
||||
* There are 24 possible conventions, designated by:
|
||||
* o EulAxI = axis used initially
|
||||
* o EulPar = parity of axis permutation
|
||||
* o EulRep = repetition of initial axis as last
|
||||
* o EulFrm = frame from which axes are taken
|
||||
* Axes I,J,K will be a permutation of X,Y,Z.
|
||||
* Axis H will be either I or K, depending on EulRep.
|
||||
* Frame S takes axes from initial static frame.
|
||||
* If ord = (AxI=X, Par=Even, Rep=No, Frm=S), then
|
||||
* {a,b,c,ord} means Rz(c)Ry(b)Rx(a), where Rz(c)v
|
||||
* rotates v around Z by c radians.
|
||||
*/
|
||||
|
||||
#define EulFrmS 0
|
||||
#define EulFrmR 1
|
||||
#define EulFrm(ord) ((unsigned)(ord)&1)
|
||||
#define EulRepNo 0
|
||||
#define EulRepYes 1
|
||||
#define EulRep(ord) (((unsigned)(ord)>>1)&1)
|
||||
#define EulParEven 0
|
||||
#define EulParOdd 1
|
||||
#define EulPar(ord) (((unsigned)(ord)>>2)&1)
|
||||
|
||||
/*! this code is merely a quick (and legal!) way to set arrays,
|
||||
EulSafe being 0,1,2,0 */
|
||||
#define EulSafe "\000\001\002\000"
|
||||
#define EulNext "\001\002\000\001"
|
||||
#define EulAxI(ord) ((int)(EulSafe[(((unsigned)(ord)>>3)&3)]))
|
||||
#define EulAxJ(ord) ((int)(EulNext[EulAxI(ord)+(EulPar(ord)==EulParOdd)]))
|
||||
#define EulAxK(ord) ((int)(EulNext[EulAxI(ord)+(EulPar(ord)!=EulParOdd)]))
|
||||
#define EulAxH(ord) ((EulRep(ord)==EulRepNo)?EulAxK(ord):EulAxI(ord))
|
||||
/*! EulGetOrd unpacks all useful information about order simultaneously. */
|
||||
#define EulGetOrd(ord,i,j,k,h,n,s,f) \
|
||||
{unsigned o=(unsigned)ord;f=o&1;o>>=1;s=o&1;o>>=1;\
|
||||
n=o&1;o>>=1;i=EulSafe[o&3];j=EulNext[i+n];k=EulNext[i+1-n];h=s?k:i;}
|
||||
/*! EulOrd creates an order value between 0 and 23 from 4-tuple choices. */
|
||||
#define EulOrd(i,p,r,f) (((((((i)<<1)+(p))<<1)+(r))<<1)+(f))
|
||||
|
||||
/* EulOrd first param: X = 0, Y = 1, Z = 2 */
|
||||
|
||||
/*! Static axes */
|
||||
#define GLM_EUL_XYZs EulOrd(0,EulParEven,EulRepNo,EulFrmS)
|
||||
#define GLM_EUL_XYXs EulOrd(0,EulParEven,EulRepYes,EulFrmS)
|
||||
#define GLM_EUL_XZYs EulOrd(0,EulParOdd,EulRepNo,EulFrmS)
|
||||
#define GLM_EUL_XZXs EulOrd(0,EulParOdd,EulRepYes,EulFrmS)
|
||||
#define GLM_EUL_YZXs EulOrd(1,EulParEven,EulRepNo,EulFrmS)
|
||||
#define GLM_EUL_YZYs EulOrd(1,EulParEven,EulRepYes,EulFrmS)
|
||||
#define GLM_EUL_YXZs EulOrd(1,EulParOdd,EulRepNo,EulFrmS)
|
||||
#define GLM_EUL_YXYs EulOrd(1,EulParOdd,EulRepYes,EulFrmS)
|
||||
#define GLM_EUL_ZXYs EulOrd(2,EulParEven,EulRepNo,EulFrmS)
|
||||
#define GLM_EUL_ZXZs EulOrd(2,EulParEven,EulRepYes,EulFrmS)
|
||||
#define GLM_EUL_ZYXs EulOrd(2,EulParOdd,EulRepNo,EulFrmS)
|
||||
#define GLM_EUL_ZYZs EulOrd(2,EulParOdd,EulRepYes,EulFrmS)
|
||||
|
||||
/*! Rotating axes */
|
||||
#define GLM_EUL_ZYXr EulOrd(0,EulParEven,EulRepNo,EulFrmR)
|
||||
#define GLM_EUL_XYXr EulOrd(0,EulParEven,EulRepYes,EulFrmR)
|
||||
#define GLM_EUL_YZXr EulOrd(0,EulParOdd,EulRepNo,EulFrmR)
|
||||
#define GLM_EUL_XZXr EulOrd(0,EulParOdd,EulRepYes,EulFrmR)
|
||||
#define GLM_EUL_XZYr EulOrd(1,EulParEven,EulRepNo,EulFrmR)
|
||||
#define GLM_EUL_YZYr EulOrd(1,EulParEven,EulRepYes,EulFrmR)
|
||||
#define GLM_EUL_ZXYr EulOrd(1,EulParOdd,EulRepNo,EulFrmR)
|
||||
#define GLM_EUL_YXYr EulOrd(1,EulParOdd,EulRepYes,EulFrmR)
|
||||
#define GLM_EUL_YXZr EulOrd(2,EulParEven,EulRepNo,EulFrmR)
|
||||
#define GLM_EUL_ZXZr EulOrd(2,EulParEven,EulRepYes,EulFrmR)
|
||||
#define GLM_EUL_XYZr EulOrd(2,EulParOdd,EulRepNo,EulFrmR)
|
||||
#define GLM_EUL_ZYZr EulOrd(2,EulParOdd,EulRepYes,EulFrmR)
|
||||
|
||||
/*!
|
||||
* @brief build matrix from euler angles
|
||||
*
|
||||
* @param[in] ea [Xangle, Yangle, Zangle, OrderCode]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_eul_mat4(vec3 ea, int order, mat4 dest) {
|
||||
float ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
|
||||
int i, j, k, h, n, s, f;
|
||||
|
||||
EulGetOrd(order, i, j, k, h, n, s, f);
|
||||
|
||||
if (f == EulFrmR)
|
||||
glm_swapf(&ea[0], &ea[2]);
|
||||
|
||||
if (n == EulParOdd)
|
||||
glm_vec3_negate(ea);
|
||||
|
||||
ti = ea[0]; tj = ea[1]; th = ea[2];
|
||||
|
||||
ci = cosf(ti); cj = cosf(tj);
|
||||
ch = cosf(th); si = sinf(ti);
|
||||
sj = sinf(tj); sh = sinf(th);
|
||||
|
||||
cc = ci * ch; cs = ci * sh;
|
||||
sc = si * ch; ss = si * sh;
|
||||
|
||||
if (s == EulRepYes) {
|
||||
dest[i][i] = cj;
|
||||
dest[i][j] = sj * si;
|
||||
dest[i][k] = sj * ci;
|
||||
dest[j][i] = sj * sh;
|
||||
dest[j][j] = -cj * ss + cc;
|
||||
dest[j][k] = -cj * cs - sc;
|
||||
dest[k][i] = -sj * ch;
|
||||
dest[k][j] = cj * sc + cs;
|
||||
dest[k][k] = cj * cc - ss;
|
||||
} else {
|
||||
dest[i][i] = cj * ch;
|
||||
dest[i][j] = sj * sc - cs;
|
||||
dest[i][k] = sj * cc + ss;
|
||||
dest[j][i] = cj * sh;
|
||||
dest[j][j] = sj * ss + cc;
|
||||
dest[j][k] = sj * cs - sc;
|
||||
dest[k][i] = -sj;
|
||||
dest[k][j] = cj * si;
|
||||
dest[k][k] = cj * ci;
|
||||
}
|
||||
|
||||
dest[3][0] = 0.f;
|
||||
dest[3][1] = 0.f;
|
||||
dest[3][2] = 0.f;
|
||||
dest[0][3] = 0.f;
|
||||
dest[1][3] = 0.f;
|
||||
dest[2][3] = 0.f;
|
||||
dest[3][3] = 1.f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* if you have axis order like vec3 orderVec = [0, 1, 2] or [0, 2, 1]...
|
||||
|
||||
Reference in New Issue
Block a user