made all the functions. I have miscalculated some stuff and am currently trying to test them. I have created all the testing functions as well

This commit is contained in:
John Choi
2023-12-08 00:26:33 -06:00
parent d67ac97323
commit c5694c5c17
3 changed files with 601 additions and 27 deletions

View File

@@ -142,7 +142,8 @@ glm_quat_init(versor q, float x, float y, float z, float w) {
//TODO: telephone001's eulertoquat
/*!
* @brief creates NEW quaternion using rotation angles and does does rotations in x y z order
* @brief creates NEW quaternion using rotation angles and does
* rotations in x y z order (roll pitch yaw)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
@@ -159,14 +160,153 @@ glm_euler_xyz_quat(versor q, vec3 angles) {
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
zc * yc * xs - zs * ys * xc,
zc * ys * xc + zs * yc * xs,
-zc * ys * xs + zs * yc * xc,
zc * yc * xc + zs * ys * xs);
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in x z y order (roll yaw pitch)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_xzy_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
yc * zc * xs + ys * zs * xc,
yc * zs * xs + ys * zc * xc,
yc * zs * xc - ys * zc * xs,
yc * zc * xc - ys * zs * xs);
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in y x z order (pitch roll yaw)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_yxz_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
zc * xc * ys - zs * xs * yc,
zc * xs * ys + zs * xc * yc,
zc * xs * yc + zs * xc * ys,
zc * xc * yc - zs * xs * ys);
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in y z x order (pitch yaw roll)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_yzx_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
-xc * zs * ys + xs * zc * yc,
xc * zc * ys - xs * zs * yc,
xc * zs * yc + xs * zc * ys,
xc * zc * yc + xs * zs * ys);
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in z x y order (yaw roll pitch)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_zxy_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
yc * xs * zc + ys * xc * zs,
yc * xc * zs - ys * xs * zc,
yc * xs * zs + ys * xc * zc,
yc * xc * zc - ys * xs * zs);
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in z y x order (yaw pitch roll)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_zyx_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
xc * ys * zs + xs * yc * zc,
xc * yc * zs + xs * ys * zc,
-xc * ys * zc + xs * yc * zs,
xc * yc * zc - xs * ys * zs);
}
/*!
* @brief creates NEW quaternion with axis vector
*

View File

@@ -123,39 +123,463 @@ TEST_IMPL(GLM_PREFIX, quatv) {
// telephone001 changes (remove comment when done) TODO
TEST_IMPL(GLM_PREFIX, euler_xyz_quat) {
/*random angles for testing*/
vec3 angles = {glm_rad(30.0f), glm_rad(60.0f), glm_rad(90.0f)};
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result = {0.0f, 0.0f, 0.0f, 0.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
test_rand_vec3(angles);
/*apply the rotations to a unit quaternion in xyz order*/
glm_quat_mul(rot_x, expected, expected);
glm_quat_mul(rot_y, expected, expected);
glm_quat_mul(rot_z, expected, expected);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*use my function to get the quaternion*/
glm_euler_xyz_quat(result, angles);
/*apply the rotations to a unit quaternion in xyz order*/
glm_quat_mul(rot_x, expected, expected);
glm_quat_mul(rot_y, expected, expected);
glm_quat_mul(rot_z, expected, expected);
fprintf(stderr,"TEST\n");
for (int i = 0; i < 4; i++) {
fprintf(stderr, "%f vs %f\n", expected[i], result[i]);
/*use my function to get the quaternion*/
glm_euler_xyz_quat(result, angles);
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xyz order*/
glm_quat_mul(rot_x, expected, expected);
glm_quat_mul(rot_y, expected, expected);
glm_quat_mul(rot_z, expected, expected);
/*use my function to get the quaternion*/
glm_euler_xyz_quat(result, angles);
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_xzy_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xzy order*/
glm_quat_mul(rot_x, expected, expected);
glm_quat_mul(rot_z, expected, expected);
glm_quat_mul(rot_y, expected, expected);
/*use my function to get the quaternion*/
glm_euler_xzy_quat(result, angles);
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xyz order*/
glm_quat_mul(rot_x, expected, expected);
glm_quat_mul(rot_z, expected, expected);
glm_quat_mul(rot_y, expected, expected);
/*use my function to get the quaternion*/
glm_euler_xzy_quat(result, angles);
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_yxz_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in yxz order*/
glm_quat_mul(rot_y, expected, expected);
glm_quat_mul(rot_x, expected, expected);
glm_quat_mul(rot_z, expected, expected);
/*use my function to get the quaternion*/
glm_euler_yxz_quat(result, angles);
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xyz order*/
glm_quat_mul(rot_y, expected, expected);
glm_quat_mul(rot_x, expected, expected);
glm_quat_mul(rot_z, expected, expected);
/*use my function to get the quaternion*/
glm_euler_zxy_quat(result, angles);
for (int i = 0; i < 4; i++) {
fprintf(stderr, "%f vs %f", result[i], expected[i]);
}
fprintf(stderr, "\n");
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_yzx_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in yzx order*/
glm_quat_mul(rot_y, expected, expected);
glm_quat_mul(rot_z, expected, expected);
glm_quat_mul(rot_x, expected, expected);
/*use my function to get the quaternion*/
glm_euler_yxz_quat(result, angles);
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in yzx order*/
glm_quat_mul(rot_y, expected, expected);
glm_quat_mul(rot_z, expected, expected);
glm_quat_mul(rot_x, expected, expected);
/*use my function to get the quaternion*/
glm_euler_zxy_quat(result, angles);
for (int i = 0; i < 4; i++) {
fprintf(stderr, "%f vs %f", result[i], expected[i]);
}
fprintf(stderr, "\n");
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_zxy_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in zxy order*/
glm_quat_mul(rot_z, expected, expected);
glm_quat_mul(rot_x, expected, expected);
glm_quat_mul(rot_y, expected, expected);
/*use my function to get the quaternion*/
glm_euler_zxy_quat(result, angles);
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in zxy order*/
glm_quat_mul(rot_z, expected, expected);
glm_quat_mul(rot_x, expected, expected);
glm_quat_mul(rot_y, expected, expected);
/*use my function to get the quaternion*/
glm_euler_zxy_quat(result, angles);
for (int i = 0; i < 4; i++) {
fprintf(stderr, "%f vs %f", result[i], expected[i]);
}
fprintf(stderr, "\n");
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_zyx_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in zyx order*/
glm_quat_mul(rot_z, expected, expected);
glm_quat_mul(rot_y, expected, expected);
glm_quat_mul(rot_x, expected, expected);
/*use my function to get the quaternion*/
glm_euler_zxy_quat(result, angles);
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xyz order*/
glm_quat_mul(rot_z, expected, expected);
glm_quat_mul(rot_y, expected, expected);
glm_quat_mul(rot_x, expected, expected);
/*use my function to get the quaternion*/
glm_euler_zxy_quat(result, angles);
for (int i = 0; i < 4; i++) {
fprintf(stderr, "%f vs %f", result[i], expected[i]);
}
fprintf(stderr, "\n");
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
ASSERTIFY(test_assert_quat_eq(result, expected))
TEST_SUCCESS
}

View File

@@ -375,6 +375,11 @@ TEST_DECLARE(glm_quat_identity_array)
TEST_DECLARE(glm_quat_init)
TEST_DECLARE(glm_quatv)
TEST_DECLARE(glm_euler_xyz_quat)
TEST_DECLARE(glm_euler_xzy_quat)
TEST_DECLARE(glm_euler_yxz_quat)
TEST_DECLARE(glm_euler_yzx_quat)
TEST_DECLARE(glm_euler_zxy_quat)
TEST_DECLARE(glm_euler_zyx_quat)
TEST_DECLARE(glm_quat)
TEST_DECLARE(glm_quat_copy)
TEST_DECLARE(glm_quat_norm)
@@ -1353,6 +1358,11 @@ TEST_LIST {
TEST_ENTRY(glm_quat_init)
TEST_ENTRY(glm_quatv)
TEST_ENTRY(glm_euler_xyz_quat)
TEST_ENTRY(glm_euler_xzy_quat)
TEST_ENTRY(glm_euler_yxz_quat)
TEST_ENTRY(glm_euler_yzx_quat)
TEST_ENTRY(glm_euler_zxy_quat)
TEST_ENTRY(glm_euler_zyx_quat)
TEST_ENTRY(glm_quat)
TEST_ENTRY(glm_quat_copy)
TEST_ENTRY(glm_quat_norm)