mirror of
https://github.com/recp/cglm.git
synced 2025-12-24 04:22:36 +00:00
update docs
This commit is contained in:
@@ -47,3 +47,4 @@ Follow the :doc:`build` documentation for this
|
||||
call
|
||||
sphere
|
||||
curve
|
||||
bezier
|
||||
|
||||
89
docs/source/bezier.rst
Normal file
89
docs/source/bezier.rst
Normal file
@@ -0,0 +1,89 @@
|
||||
.. default-domain:: C
|
||||
|
||||
Bezier
|
||||
================================================================================
|
||||
|
||||
Header: cglm/bezier.h
|
||||
|
||||
Common helpers for cubic bezier and similar curves.
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_bezier`
|
||||
2. :c:func:`glm_hermite`
|
||||
3. :c:func:`glm_decasteljau`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: float glm_bezier(float s, float p0, float c0, float c1, float p1)
|
||||
|
||||
| cubic bezier interpolation
|
||||
| formula:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
B(s) = P0*(1-s)^3 + 3*C0*s*(1-s)^2 + 3*C1*s^2*(1-s) + P1*s^3
|
||||
|
||||
| similar result using matrix:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
B(s) = glm_smc(t, GLM_BEZIER_MAT, (vec4){p0, c0, c1, p1})
|
||||
|
||||
| glm_eq(glm_smc(...), glm_bezier(...)) should return TRUE
|
||||
|
||||
Parameters:
|
||||
| *[in]* **s** parameter between 0 and 1
|
||||
| *[in]* **p0** begin point
|
||||
| *[in]* **c0** control point 1
|
||||
| *[in]* **c1** control point 2
|
||||
| *[in]* **p1** end point
|
||||
|
||||
Returns:
|
||||
B(s)
|
||||
|
||||
.. c:function:: float glm_hermite(float s, float p0, float t0, float t1, float p1)
|
||||
|
||||
| cubic hermite interpolation
|
||||
| formula:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
H(s) = P0*(2*s^3 - 3*s^2 + 1) + T0*(s^3 - 2*s^2 + s) + P1*(-2*s^3 + 3*s^2) + T1*(s^3 - s^2)
|
||||
|
||||
| similar result using matrix:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
H(s) = glm_smc(t, GLM_HERMITE_MAT, (vec4){p0, p1, c0, c1})
|
||||
|
||||
| glm_eq(glm_smc(...), glm_hermite(...)) should return TRUE
|
||||
|
||||
|
||||
Parameters:
|
||||
| *[in]* **s** parameter between 0 and 1
|
||||
| *[in]* **p0** begin point
|
||||
| *[in]* **t0** tangent 1
|
||||
| *[in]* **t1** tangent 2
|
||||
| *[in]* **p1** end point
|
||||
|
||||
Returns:
|
||||
B(s)
|
||||
|
||||
.. c:function:: float glm_decasteljau(float prm, float p0, float c0, float c1, float p1)
|
||||
|
||||
| iterative way to solve cubic equation
|
||||
|
||||
Parameters:
|
||||
| *[in]* **prm** parameter between 0 and 1
|
||||
| *[in]* **p0** begin point
|
||||
| *[in]* **c0** control point 1
|
||||
| *[in]* **c1** control point 2
|
||||
| *[in]* **p1** end point
|
||||
|
||||
Returns:
|
||||
parameter to use in cubic equation
|
||||
Reference in New Issue
Block a user