mat4: precise matrix inverse

* TODO: duplicated code!
This commit is contained in:
Recep Aslantas
2016-10-11 14:22:25 +03:00
parent b2e8e7c77b
commit 3c26a7f820
2 changed files with 149 additions and 1 deletions

View File

@@ -278,5 +278,129 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
_mm_store_ps(dest[3], _mm_mul_ps(v3, x0));
}
CGLM_INLINE
void
glm_mat4_inv_precise_sse2(mat4 mat, mat4 dest) {
__m128 r0, r1, r2, r3,
v0, v1, v2, v3,
t0, t1, t2, t3, t4, t5,
x0, x1, x2, x3, x4, x5, x6, x7;
/* 127 <- 0 */
r0 = _mm_load_ps(mat[0]); /* d c b a */
r1 = _mm_load_ps(mat[1]); /* h g f e */
r2 = _mm_load_ps(mat[2]); /* l k j i */
r3 = _mm_load_ps(mat[3]); /* p o n m */
x0 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(3, 2, 3, 2)); /* p o l k */
x1 = _mm_shuffle1_ps(x0, 1, 3, 3, 3); /* l p p p */
x2 = _mm_shuffle1_ps(x0, 0, 2, 2, 2); /* k o o o */
x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
/* t1[0] = k * p - o * l;
t1[0] = k * p - o * l;
t2[0] = g * p - o * h;
t3[0] = g * l - k * h; */
t0 = _mm_sub_ps(_mm_mul_ps(x3, x1), _mm_mul_ps(x2, x0));
x4 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(2, 1, 2, 1)); /* o n k j */
x4 = _mm_shuffle1_ps(x4, 0, 2, 2, 2); /* j n n n */
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
/* t1[1] = j * p - n * l;
t1[1] = j * p - n * l;
t2[1] = f * p - n * h;
t3[1] = f * l - j * h; */
t1 = _mm_sub_ps(_mm_mul_ps(x5, x1), _mm_mul_ps(x4, x0));
/* t1[2] = j * o - n * k
t1[2] = j * o - n * k;
t2[2] = f * o - n * g;
t3[2] = f * k - j * g; */
t2 = _mm_sub_ps(_mm_mul_ps(x5, x2), _mm_mul_ps(x4, x3));
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
x7 = _mm_shuffle2_ps(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
/* t1[3] = i * p - m * l;
t1[3] = i * p - m * l;
t2[3] = e * p - m * h;
t3[3] = e * l - i * h; */
t3 = _mm_sub_ps(_mm_mul_ps(x6, x1), _mm_mul_ps(x7, x0));
/* t1[4] = i * o - m * k;
t1[4] = i * o - m * k;
t2[4] = e * o - m * g;
t3[4] = e * k - i * g; */
t4 = _mm_sub_ps(_mm_mul_ps(x6, x2), _mm_mul_ps(x7, x3));
/* t1[5] = i * n - m * j;
t1[5] = i * n - m * j;
t2[5] = e * n - m * f;
t3[5] = e * j - i * f; */
t5 = _mm_sub_ps(_mm_mul_ps(x6, x4), _mm_mul_ps(x7, x5));
x0 = _mm_shuffle2_ps(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
x1 = _mm_shuffle2_ps(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
x2 = _mm_shuffle2_ps(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
x3 = _mm_shuffle2_ps(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
/*
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
dest[0][1] =-(b * t1[0] - c * t1[1] + d * t1[2]);
dest[0][2] = b * t2[0] - c * t2[1] + d * t2[2];
dest[0][3] =-(b * t3[0] - c * t3[1] + d * t3[2]); */
v0 = _mm_add_ps(_mm_mul_ps(x3, t2),
_mm_sub_ps(_mm_mul_ps(x1, t0),
_mm_mul_ps(x2, t1)));
v0 = _mm_xor_ps(v0, _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
/*
dest[1][0] =-(e * t1[0] - g * t1[3] + h * t1[4]);
dest[1][1] = a * t1[0] - c * t1[3] + d * t1[4];
dest[1][2] =-(a * t2[0] - c * t2[3] + d * t2[4]);
dest[1][3] = a * t3[0] - c * t3[3] + d * t3[4]; */
v1 = _mm_add_ps(_mm_mul_ps(x3, t4),
_mm_sub_ps(_mm_mul_ps(x0, t0),
_mm_mul_ps(x2, t3)));
v1 = _mm_xor_ps(v1, _mm_set_ps(0.f, -0.f, 0.f, -0.f));
/*
dest[2][0] = e * t1[1] - f * t1[3] + h * t1[5];
dest[2][1] =-(a * t1[1] - b * t1[3] + d * t1[5]);
dest[2][2] = a * t2[1] - b * t2[3] + d * t2[5];
dest[2][3] =-(a * t3[1] - b * t3[3] + d * t3[5]);*/
v2 = _mm_add_ps(_mm_mul_ps(x3, t5),
_mm_sub_ps(_mm_mul_ps(x0, t1),
_mm_mul_ps(x1, t3)));
v2 = _mm_xor_ps(v2, _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
/*
dest[3][0] =-(e * t1[2] - f * t1[4] + g * t1[5]);
dest[3][1] = a * t1[2] - b * t1[4] + c * t1[5];
dest[3][2] =-(a * t2[2] - b * t2[4] + c * t2[5]);
dest[3][3] = a * t3[2] - b * t3[4] + c * t3[5]; */
v3 = _mm_add_ps(_mm_mul_ps(x2, t5),
_mm_sub_ps(_mm_mul_ps(x0, t2),
_mm_mul_ps(x1, t4)));
v3 = _mm_xor_ps(v3, _mm_set_ps(0.f, -0.f, 0.f, -0.f));
/* determinant */
x0 = _mm_shuffle_ps(v0, v1, _MM_SHUFFLE(0, 0, 0, 0));
x1 = _mm_shuffle_ps(v2, v3, _MM_SHUFFLE(0, 0, 0, 0));
x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0));
x0 = _mm_mul_ps(x0, r0);
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 0, 1, 2, 3));
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 1, 0, 0, 1));
x0 = _mm_div_ps(_mm_set1_ps(1.0f), x0);
_mm_store_ps(dest[0], _mm_mul_ps(v0, x0));
_mm_store_ps(dest[1], _mm_mul_ps(v1, x0));
_mm_store_ps(dest[2], _mm_mul_ps(v2, x0));
_mm_store_ps(dest[3], _mm_mul_ps(v3, x0));
}
#endif
#endif /* cglm_mat_sse_h */

View File

@@ -340,7 +340,9 @@ glm_mat4_det(mat4 mat) {
/*!
* @brief inverse mat4 and store in dest
*
* @todo this function could return existence of inverse (BOOL)
* this func uses reciprocal approximation without extra corrections
* e.g Newton-Raphson. this should work faster than _precise,
* to get precise value use _precise version
*
* @param[in] mat matrix
* @param[out] dest inverse matrix
@@ -399,4 +401,26 @@ glm_mat4_inv(mat4 mat, mat4 dest) {
#endif
}
/*!
* @brief inverse mat4 precisely and store in dest
*
* this do same thing as glm_mat4_inv did. the only diff is this func uses
* division instead of reciprocal approximation. Due to division this might
* work slower than glm_mat4_inv
*
* @param[in] mat matrix
* @param[out] dest inverse matrix
*/
CGLM_INLINE
void
glm_mat4_inv_precise(mat4 mat, mat4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_inv_precise_sse2(mat, dest);
#else
glm_mat4_inv_precise(mat, dest);
#endif
}
#else
#endif /* cglm_mat_h */