added handed folder and also made rh tests for the euler->quat functions. Still deciding on what to name the macro for lefthanded stuff

This commit is contained in:
John Choi
2023-12-24 23:58:29 -06:00
parent 42b5e834d1
commit 39c0c1e784
6 changed files with 786 additions and 647 deletions

View File

@@ -43,6 +43,8 @@
#include "common.h"
#include "handed/euler_to_quat_rh.h"
/*!
* if you have axis order like vec3 orderVec = [0, 1, 2] or [0, 2, 1]...
* vector then you can convert it to this enum by doing this:
@@ -194,7 +196,6 @@ glm_euler_xzy(vec3 angles, mat4 dest) {
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
@@ -465,18 +466,11 @@ glm_euler_by_order(vec3 angles, glm_euler_seq ord, mat4 dest) {
CGLM_INLINE
void
glm_euler_xyz_quat(vec3 angles, versor dest) {
float xc, yc, zc,
xs, ys, zs;
xs = sinf(angles[0] * 0.5f); xc = cosf(angles[0] * 0.5f);
ys = sinf(angles[1] * 0.5f); yc = cosf(angles[1] * 0.5f);
zs = sinf(angles[2] * 0.5f); zc = cosf(angles[2] * 0.5f);
dest[0] = xc * ys * zs + xs * yc * zc;
dest[1] = xc * ys * zc - xs * yc * zs;
dest[2] = xc * yc * zs + xs * ys * zc;
dest[3] = xc * yc * zc - xs * ys * zs;
#ifdef CGLM_FORCE_LEFT_HANDED
glm_euler_xyz_quat_lh(angles, dest);
#else
glm_euler_xyz_quat_rh(angles, dest);
#endif
}
/*!
@@ -489,18 +483,11 @@ glm_euler_xyz_quat(vec3 angles, versor dest) {
CGLM_INLINE
void
glm_euler_xzy_quat(vec3 angles, versor dest) {
float xc, yc, zc,
xs, ys, zs;
xs = sinf(angles[0] * 0.5f); xc = cosf(angles[0] * 0.5f);
ys = sinf(angles[1] * 0.5f); yc = cosf(angles[1] * 0.5f);
zs = sinf(angles[2] * 0.5f); zc = cosf(angles[2] * 0.5f);
dest[0] = -xc * zs * ys + xs * zc * yc;
dest[1] = xc * zc * ys - xs * zs * yc;
dest[2] = xc * zs * yc + xs * zc * ys;
dest[3] = xc * zc * yc + xs * zs * ys;
#ifdef CGLM_FORCE_LEFT_HANDED
glm_euler_xzy_quat_lh(angles, dest);
#else
glm_euler_xzy_quat_rh(angles, dest);
#endif
}
/*!
@@ -513,17 +500,11 @@ glm_euler_xzy_quat(vec3 angles, versor dest) {
CGLM_INLINE
void
glm_euler_yxz_quat(vec3 angles, versor dest) {
float xc, yc, zc,
xs, ys, zs;
xs = sinf(angles[0] * 0.5f); xc = cosf(angles[0] * 0.5f);
ys = sinf(angles[1] * 0.5f); yc = cosf(angles[1] * 0.5f);
zs = sinf(angles[2] * 0.5f); zc = cosf(angles[2] * 0.5f);
dest[0] = yc * xs * zc + ys * xc * zs;
dest[1] = -yc * xs * zs + ys * xc * zc;
dest[2] = yc * xc * zs - ys * xs * zc;
dest[3] = yc * xc * zc + ys * xs * zs;
#ifdef CGLM_FORCE_LEFT_HANDED
glm_euler_yxz_quat_lh(angles, dest);
#else
glm_euler_yxz_quat_rh(angles, dest);
#endif
}
/*!
@@ -536,18 +517,11 @@ glm_euler_yxz_quat(vec3 angles, versor dest) {
CGLM_INLINE
void
glm_euler_yzx_quat(vec3 angles, versor dest) {
float xc, yc, zc,
xs, ys, zs;
xs = sinf(angles[0] * 0.5f); xc = cosf(angles[0] * 0.5f);
ys = sinf(angles[1] * 0.5f); yc = cosf(angles[1] * 0.5f);
zs = sinf(angles[2] * 0.5f); zc = cosf(angles[2] * 0.5f);
dest[0] = yc * zc * xs + ys * zs * xc;
dest[1] = yc * zs * xs + ys * zc * xc;
dest[2] = yc * zs * xc - ys * zc * xs;
dest[3] = yc * zc * xc - ys * zs * xs;
#ifdef CGLM_FORCE_LEFT_HANDED
glm_euler_yzx_quat_lh(angles, dest);
#else
glm_euler_yzx_quat_rh(angles, dest);
#endif
}
/*!
@@ -560,17 +534,11 @@ glm_euler_yzx_quat(vec3 angles, versor dest) {
CGLM_INLINE
void
glm_euler_zxy_quat(vec3 angles, versor dest) {
float xc, yc, zc,
xs, ys, zs;
xs = sinf(angles[0] * 0.5f); xc = cosf(angles[0] * 0.5f);
ys = sinf(angles[1] * 0.5f); yc = cosf(angles[1] * 0.5f);
zs = sinf(angles[2] * 0.5f); zc = cosf(angles[2] * 0.5f);
dest[0] = zc * xs * yc - zs * xc * ys;
dest[1] = zc * xc * ys + zs * xs * yc;
dest[2] = zc * xs * ys + zs * xc * yc;
dest[3] = zc * xc * yc - zs * xs * ys;
#ifdef CGLM_FORCE_LEFT_HANDED
glm_euler_zxy_quat_lh(angles, dest);
#else
glm_euler_zxy_quat_rh(angles, dest);
#endif
}
/*!
@@ -583,17 +551,11 @@ glm_euler_zxy_quat(vec3 angles, versor dest) {
CGLM_INLINE
void
glm_euler_zyx_quat(vec3 angles, versor dest) {
float xc, yc, zc,
xs, ys, zs;
xs = sinf(angles[0] * 0.5f); xc = cosf(angles[0] * 0.5f);
ys = sinf(angles[1] * 0.5f); yc = cosf(angles[1] * 0.5f);
zs = sinf(angles[2] * 0.5f); zc = cosf(angles[2] * 0.5f);
dest[0] = zc * yc * xs - zs * ys * xc;
dest[1] = zc * ys * xc + zs * yc * xs;
dest[2] = -zc * ys * xs + zs * yc * xc;
dest[3] = zc * yc * xc + zs * ys * xs;
#ifdef CGLM_FORCE_LEFT_HANDED
glm_euler_zyx_quat_lh(angles, dest);
#else
glm_euler_zyx_quat_rh(angles, dest);
#endif
}

View File

@@ -0,0 +1,165 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_euler_xyz_quat_rh(vec3 angles, versor dest);
CGLM_INLINE void glm_euler_xzy_quat_rh(vec3 angles, versor dest);
CGLM_INLINE void glm_euler_yxz_quat_rh(vec3 angles, versor dest);
CGLM_INLINE void glm_euler_yzx_quat_rh(vec3 angles, versor dest);
CGLM_INLINE void glm_euler_zxy_quat_rh(vec3 angles, versor dest);
CGLM_INLINE void glm_euler_zyx_quat_rh(vec3 angles, versor dest);
*/
#ifndef cglm_euler_to_quat_rh_h
#define cglm_euler_to_quat_rh_h
#include "../common.h"
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in x y z order in right hand (roll pitch yaw)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_xyz_quat_rh(vec3 angles, versor dest) {
float xc, yc, zc,
xs, ys, zs;
xs = sinf(angles[0] * 0.5f); xc = cosf(angles[0] * 0.5f);
ys = sinf(angles[1] * 0.5f); yc = cosf(angles[1] * 0.5f);
zs = sinf(angles[2] * 0.5f); zc = cosf(angles[2] * 0.5f);
dest[0] = xc * ys * zs + xs * yc * zc;
dest[1] = xc * ys * zc - xs * yc * zs;
dest[2] = xc * yc * zs + xs * ys * zc;
dest[3] = xc * yc * zc - xs * ys * zs;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in x z y order in right hand (roll yaw pitch)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_xzy_quat_rh(vec3 angles, versor dest) {
float xc, yc, zc,
xs, ys, zs;
xs = sinf(angles[0] * 0.5f); xc = cosf(angles[0] * 0.5f);
ys = sinf(angles[1] * 0.5f); yc = cosf(angles[1] * 0.5f);
zs = sinf(angles[2] * 0.5f); zc = cosf(angles[2] * 0.5f);
dest[0] = -xc * zs * ys + xs * zc * yc;
dest[1] = xc * zc * ys - xs * zs * yc;
dest[2] = xc * zs * yc + xs * zc * ys;
dest[3] = xc * zc * yc + xs * zs * ys;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in y x z order in right hand (pitch roll yaw)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_yxz_quat_rh(vec3 angles, versor dest) {
float xc, yc, zc,
xs, ys, zs;
xs = sinf(angles[0] * 0.5f); xc = cosf(angles[0] * 0.5f);
ys = sinf(angles[1] * 0.5f); yc = cosf(angles[1] * 0.5f);
zs = sinf(angles[2] * 0.5f); zc = cosf(angles[2] * 0.5f);
dest[0] = yc * xs * zc + ys * xc * zs;
dest[1] = -yc * xs * zs + ys * xc * zc;
dest[2] = yc * xc * zs - ys * xs * zc;
dest[3] = yc * xc * zc + ys * xs * zs;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in y z x order in right hand (pitch yaw roll)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_yzx_quat_rh(vec3 angles, versor dest) {
float xc, yc, zc,
xs, ys, zs;
xs = sinf(angles[0] * 0.5f); xc = cosf(angles[0] * 0.5f);
ys = sinf(angles[1] * 0.5f); yc = cosf(angles[1] * 0.5f);
zs = sinf(angles[2] * 0.5f); zc = cosf(angles[2] * 0.5f);
dest[0] = yc * zc * xs + ys * zs * xc;
dest[1] = yc * zs * xs + ys * zc * xc;
dest[2] = yc * zs * xc - ys * zc * xs;
dest[3] = yc * zc * xc - ys * zs * xs;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in z x y order in right hand (yaw roll pitch)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_zxy_quat_rh(vec3 angles, versor dest) {
float xc, yc, zc,
xs, ys, zs;
xs = sinf(angles[0] * 0.5f); xc = cosf(angles[0] * 0.5f);
ys = sinf(angles[1] * 0.5f); yc = cosf(angles[1] * 0.5f);
zs = sinf(angles[2] * 0.5f); zc = cosf(angles[2] * 0.5f);
dest[0] = zc * xs * yc - zs * xc * ys;
dest[1] = zc * xc * ys + zs * xs * yc;
dest[2] = zc * xs * ys + zs * xc * yc;
dest[3] = zc * xc * yc - zs * xs * ys;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in z y x order in right hand (yaw pitch roll)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_zyx_quat_rh(vec3 angles, versor dest) {
float xc, yc, zc,
xs, ys, zs;
xs = sinf(angles[0] * 0.5f); xc = cosf(angles[0] * 0.5f);
ys = sinf(angles[1] * 0.5f); yc = cosf(angles[1] * 0.5f);
zs = sinf(angles[2] * 0.5f); zc = cosf(angles[2] * 0.5f);
dest[0] = zc * yc * xs - zs * ys * xc;
dest[1] = zc * ys * xc + zs * yc * xs;
dest[2] = -zc * ys * xs + zs * yc * xc;
dest[3] = zc * yc * xc + zs * ys * xs;
}
#endif /*cglm_euler_to_quat_rh_h*/

View File

@@ -7,571 +7,6 @@
#include "test_common.h"
TEST_IMPL(glm_euler_xyz_quat) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
mat4 expected_mat4;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in xyz order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_euler_xyz_quat(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_XYZ, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in xyz order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
/* use my function to get the quaternion */
glm_euler_xyz_quat(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_XYZ, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
}
}
TEST_SUCCESS
}
TEST_IMPL(glm_euler_xzy_quat) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
mat4 expected_mat4;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in xzy order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_euler_xzy_quat(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_XZY, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in xzy order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
/* use my function to get the quaternion */
glm_euler_xzy_quat(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_XZY, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
}
}
TEST_SUCCESS
}
TEST_IMPL(glm_euler_yxz_quat) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
mat4 expected_mat4;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in yxz order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_euler_yxz_quat(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_YXZ, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in yxz order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
/* use my function to get the quaternion */
glm_euler_yxz_quat(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_YXZ, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
}
}
TEST_SUCCESS
}
TEST_IMPL(glm_euler_yzx_quat) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
mat4 expected_mat4;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in yzx order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_euler_yzx_quat(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_YZX, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in yzx order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
/* use my function to get the quaternion */
glm_euler_yzx_quat(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_YZX, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
}
}
TEST_SUCCESS
}
TEST_IMPL(glm_euler_zxy_quat) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
mat4 expected_mat4;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in zxy order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_euler_zxy_quat(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_ZXY, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in zxy order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
/* use my function to get the quaternion */
glm_euler_zxy_quat(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_ZXY, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
}
}
TEST_SUCCESS
}
TEST_IMPL(glm_euler_zyx_quat) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
mat4 expected_mat4;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in zyx order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_euler_zyx_quat(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_ZYX, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in xyz order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
/* use my function to get the quaternion */
glm_euler_zyx_quat(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_ZYX, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
}
}
TEST_SUCCESS
}
TEST_IMPL(euler) {
mat4 rot1, rot2;
vec3 inAngles, outAngles;

View File

@@ -0,0 +1,575 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#include "test_common.h"
#include "../../include/cglm/handed/euler_to_quat_rh.h"
TEST_IMPL(GLM_PREFIX, euler_xyz_quat_rh) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
mat4 expected_mat4;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in xyz order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_euler_xyz_quat_rh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_XYZ, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in xyz order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
/* use my function to get the quaternion */
glm_euler_xyz_quat_rh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_XYZ, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_xzy_quat_rh) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
mat4 expected_mat4;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in xzy order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_euler_xzy_quat_rh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_XZY, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in xzy order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
/* use my function to get the quaternion */
glm_euler_xzy_quat_rh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_XZY, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_yxz_quat_rh) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
mat4 expected_mat4;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in yxz order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_euler_yxz_quat_rh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_YXZ, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in yxz order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
/* use my function to get the quaternion */
glm_euler_yxz_quat_rh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_YXZ, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_yzx_quat_rh) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
mat4 expected_mat4;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in yzx order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_euler_yzx_quat_rh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_YZX, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in yzx order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
/* use my function to get the quaternion */
glm_euler_yzx_quat_rh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_YZX, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_zxy_quat_rh) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
mat4 expected_mat4;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in zxy order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_euler_zxy_quat_rh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_ZXY, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in zxy order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
/* use my function to get the quaternion */
glm_euler_zxy_quat_rh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_ZXY, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_zyx_quat_rh) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
versor tmp;
mat4 expected_mat4;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
test_rand_vec3(angles);
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in zyx order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
glm_euler_zyx_quat_rh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_ZYX, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/* apply the rotations to a unit quaternion in xyz order */
glm_quat_identity(expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(tmp, rot_x, expected);
/* use my function to get the quaternion */
glm_euler_zyx_quat_rh(angles, result);
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
glm_euler_by_order(angles, GLM_EULER_ZYX, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq_abs(result, expected));
}
}
}
TEST_SUCCESS
}

View File

@@ -39,6 +39,7 @@
#include "test_cam_lh_zo.h"
#include "test_cam_rh_no.h"
#include "test_cam_rh_zo.h"
#include "test_euler_to_quat_rh.h"
#undef GLM
#undef GLM_PREFIX
@@ -76,6 +77,7 @@
#include "test_cam_lh_zo.h"
#include "test_cam_rh_no.h"
#include "test_cam_rh_zo.h"
#include "test_euler_to_quat_rh.h"
#undef GLM
#undef GLM_PREFIX

View File

@@ -360,12 +360,12 @@ TEST_DECLARE(glmc_plane_normalize)
TEST_DECLARE(clamp)
/* euler */
TEST_DECLARE(glm_euler_xyz_quat)
TEST_DECLARE(glm_euler_xzy_quat)
TEST_DECLARE(glm_euler_yxz_quat)
TEST_DECLARE(glm_euler_yzx_quat)
TEST_DECLARE(glm_euler_zxy_quat)
TEST_DECLARE(glm_euler_zyx_quat)
TEST_DECLARE(glm_euler_xyz_quat_rh)
TEST_DECLARE(glm_euler_xzy_quat_rh)
TEST_DECLARE(glm_euler_yxz_quat_rh)
TEST_DECLARE(glm_euler_yzx_quat_rh)
TEST_DECLARE(glm_euler_zxy_quat_rh)
TEST_DECLARE(glm_euler_zyx_quat_rh)
TEST_DECLARE(euler)
/* ray */
@@ -1361,12 +1361,12 @@ TEST_LIST {
TEST_ENTRY(clamp)
/* euler */
TEST_ENTRY(glm_euler_xyz_quat)
TEST_ENTRY(glm_euler_xzy_quat)
TEST_ENTRY(glm_euler_yxz_quat)
TEST_ENTRY(glm_euler_yzx_quat)
TEST_ENTRY(glm_euler_zxy_quat)
TEST_ENTRY(glm_euler_zyx_quat)
TEST_ENTRY(glm_euler_xyz_quat_rh)
TEST_ENTRY(glm_euler_xzy_quat_rh)
TEST_ENTRY(glm_euler_yxz_quat_rh)
TEST_ENTRY(glm_euler_yzx_quat_rh)
TEST_ENTRY(glm_euler_zxy_quat_rh)
TEST_ENTRY(glm_euler_zyx_quat_rh)
TEST_ENTRY(euler)
/* ray */