fixed up the code to fit with the style, Also found out that I was calculating my quaternion rotations the opposite way (zyx order instead of xyz order)

This commit is contained in:
John Choi
2023-12-10 01:16:09 -06:00
parent 036fd4848b
commit 2eb9a67a3a
2 changed files with 375 additions and 368 deletions

View File

@@ -9,88 +9,94 @@
TEST_IMPL(GLM_PREFIX, euler_xyz_quat) {
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xyz order*/
/* apply the rotations to a unit quaternion in xyz order */
glm_quat_identity(expected);
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_mul(tmp, rot_z, expected);
/*use my function to get the quaternion*/
glm_euler_xyz_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
mat4 expected_mat4;
glm_euler_by_order(angles, GLM_EULER_XYZ, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
}
/*Start gimbal lock tests*/
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xyz order*/
/* apply the rotations to a unit quaternion in xyz order */
glm_quat_identity(expected);
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
/*use my function to get the quaternion*/
glm_quat_mul(tmp, rot_z, expected);
/* use my function to get the quaternion */
glm_euler_xyz_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
mat4 expected_mat4;
glm_euler_by_order(angles, GLM_EULER_XYZ, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
fprintf(stderr, "%f %f %f %f vs %f %f %f %f\n",
expected[0], expected[1], expected[2], expected[3],
result[0], result[1], result[2], result[3]);
ASSERTIFY(test_assert_quat_eq(result, expected));
}
}
}
@@ -98,454 +104,476 @@ TEST_IMPL(GLM_PREFIX, euler_xyz_quat) {
}
TEST_IMPL(GLM_PREFIX, euler_xzy_quat) {
TEST_SUCCESS //TODO REMOVE
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xzy order*/
/* apply the rotations to a unit quaternion in xzy order */
glm_quat_identity(expected);
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_mul(tmp, rot_y, expected);
/*use my function to get the quaternion*/
glm_euler_xzy_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
/* verify that it acts the same as glm_euler_by_order */
mat4 expected_mat4;
glm_euler_by_order(angles, GLM_EULER_XZY, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xyz order*/
/* apply the rotations to a unit quaternion in xzy order */
glm_quat_identity(expected);
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_mul(tmp, rot_y, expected);
/*use my function to get the quaternion*/
glm_euler_xzy_quat(result, angles);
/* use my function to get the quaternion */
glm_euler_xyz_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
mat4 expected_mat4;
glm_euler_by_order(angles, GLM_EULER_XZY, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq(result, expected));
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_yxz_quat) {
TEST_SUCCESS //TODO REMOVE
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in yxz order*/
/* apply the rotations to a unit quaternion in yxz order */
glm_quat_identity(expected);
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_mul(tmp, rot_z, expected);
/*use my function to get the quaternion*/
glm_euler_yxz_quat(result, angles);
glm_euler_xyz_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
/* verify that it acts the same as glm_euler_by_order */
mat4 expected_mat4;
glm_euler_by_order(angles, GLM_EULER_YXZ, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in yxz order*/
/* apply the rotations to a unit quaternion in yxz order */
glm_quat_identity(expected);
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_mul(tmp, rot_z, expected);
/*use my function to get the quaternion*/
glm_euler_yxz_quat(result, angles);
/* use my function to get the quaternion */
glm_euler_xyz_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
mat4 expected_mat4;
glm_euler_by_order(angles, GLM_EULER_YXZ, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq(result, expected));
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_yzx_quat) {
TEST_SUCCESS //TODO REMOVE
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in yzx order*/
/* apply the rotations to a unit quaternion in yzx order */
glm_quat_identity(expected);
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_mul(tmp, rot_x, expected);
/*use my function to get the quaternion*/
glm_euler_yzx_quat(result, angles);
glm_euler_xyz_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
/* verify that it acts the same as glm_euler_by_order */
mat4 expected_mat4;
glm_euler_by_order(angles, GLM_EULER_YZX, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in yzx order*/
/* apply the rotations to a unit quaternion in yzx order */
glm_quat_identity(expected);
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_mul(tmp, rot_x, expected);
/*use my function to get the quaternion*/
glm_euler_yzx_quat(result, angles);
/* use my function to get the quaternion */
glm_euler_xyz_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
mat4 expected_mat4;
glm_euler_by_order(angles, GLM_EULER_YZX, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq(result, expected));
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_zxy_quat) {
TEST_SUCCESS //TODO REMOVE
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in zxy order*/
/* apply the rotations to a unit quaternion in zxy order */
glm_quat_identity(expected);
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_mul(tmp, rot_y, expected);
/*use my function to get the quaternion*/
glm_euler_zxy_quat(result, angles);
glm_euler_xyz_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
/* verify that it acts the same as glm_euler_by_order */
mat4 expected_mat4;
glm_euler_by_order(angles, GLM_EULER_ZXY, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in zxy order*/
/* apply the rotations to a unit quaternion in zxy order */
glm_quat_identity(expected);
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_mul(tmp, rot_x, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_mul(tmp, rot_y, expected);
/* use my function to get the quaternion */
glm_euler_xyz_quat(result, angles);
/*use my function to get the quaternion*/
glm_euler_zxy_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
mat4 expected_mat4;
glm_euler_by_order(angles, GLM_EULER_ZXY, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq(result, expected));
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_zyx_quat) {
TEST_SUCCESS //TODO REMOVE
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
/* random angles for testing */
vec3 angles;
/* quaternion representations for rotations */
versor rot_x, rot_y, rot_z;
versor expected;
versor result;
/* 100 randomized tests */
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in zyx order*/
/* apply the rotations to a unit quaternion in zyx order */
glm_quat_identity(expected);
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_mul(tmp, rot_x, expected);
glm_euler_xyz_quat(result, angles);
/*use my function to get the quaternion*/
glm_euler_zyx_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
/* verify that it acts the same as rotating by 3 axis quaternions */
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
/* verify that it acts the same as glm_euler_by_order */
mat4 expected_mat4;
glm_euler_by_order(angles, GLM_EULER_ZYX, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq(result, expected));
}
/* Start gimbal lock tests */
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
angles[0] = x;
angles[1] = y;
angles[2] = z;
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
/* create the rotation quaternions using the angles and axises */
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in zyx order*/
/* apply the rotations to a unit quaternion in xyz order */
glm_quat_identity(expected);
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_mul(tmp, rot_z, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_mul(tmp, rot_y, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_mul(tmp, rot_x, expected);
/* use my function to get the quaternion */
glm_euler_xyz_quat(result, angles);
/*use my function to get the quaternion*/
glm_euler_zyx_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
/* verify if the magnitude of the quaternion stays 1 */
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
/* verify that it acts the same as glm_euler_by_order */
mat4 expected_mat4;
glm_euler_by_order(angles, GLM_EULER_ZYX, expected_mat4);
glm_mat4_quat(expected_mat4, expected);
ASSERTIFY(test_assert_quat_eq(result, expected));
}
}
}
TEST_SUCCESS
}
TEST_IMPL(euler) {
mat4 rot1, rot2;
vec3 inAngles, outAngles;