mirror of
https://github.com/recp/cglm.git
synced 2025-12-24 12:32:40 +00:00
moved all my stuff to euler because it fits there better. Also, had to move my tests into a single euler test because it wouldn't work outside that one test. Maybe later I will create test_euler.h like how test_quat.h works
This commit is contained in:
@@ -49,6 +49,31 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_by_order(vec3 angles, glm_euler_seq axis, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_xyz_quat(versor q, vec3 angles);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_xzy_quat(versor q, vec3 angles);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_yxz_quat(versor q, vec3 angles);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_yzx_quat(versor q, vec3 angles);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_zxy_quat(versor q, vec3 angles);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_zyx_quat(versor q, vec3 angles);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -25,30 +25,6 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_init(versor q, float x, float y, float z, float w);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_xyz_quat(versor q, vec3 angles);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_xzy_quat(versor q, vec3 angles);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_yxz_quat(versor q, vec3 angles);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_yzx_quat(versor q, vec3 angles);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_zxy_quat(versor q, vec3 angles);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_zyx_quat(versor q, vec3 angles);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat(versor q, float angle, float x, float y, float z);
|
||||
|
||||
@@ -30,6 +30,12 @@
|
||||
CGLM_INLINE void glm_euler_by_order(vec3 angles,
|
||||
glm_euler_seq ord,
|
||||
mat4 dest);
|
||||
CGLM_INLINE void glm_euler_xyz_quat(versor q, vec3 angles);
|
||||
CGLM_INLINE void glm_euler_xzy_quat(versor q, vec3 angles);
|
||||
CGLM_INLINE void glm_euler_yxz_quat(versor q, vec3 angles);
|
||||
CGLM_INLINE void glm_euler_yzx_quat(versor q, vec3 angles);
|
||||
CGLM_INLINE void glm_euler_zxy_quat(versor q, vec3 angles);
|
||||
CGLM_INLINE void glm_euler_zyx_quat(versor q, vec3 angles);
|
||||
*/
|
||||
|
||||
#ifndef cglm_euler_h
|
||||
@@ -449,5 +455,167 @@ glm_euler_by_order(vec3 angles, glm_euler_seq ord, mat4 dest) {
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in x y z order (roll pitch yaw)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_xyz_quat(versor q, vec3 angles) {
|
||||
float xs = sinf(angles[0] / 2.0f);
|
||||
float xc = cosf(angles[0] / 2.0f);
|
||||
|
||||
float ys = sinf(angles[1] / 2.0f);
|
||||
float yc = cosf(angles[1] / 2.0f);
|
||||
|
||||
float zs = sinf(angles[2] / 2.0f);
|
||||
float zc = cosf(angles[2] / 2.0f);
|
||||
|
||||
|
||||
glm_quat_init(q,
|
||||
zc * yc * xs - zs * ys * xc,
|
||||
zc * ys * xc + zs * yc * xs,
|
||||
-zc * ys * xs + zs * yc * xc,
|
||||
zc * yc * xc + zs * ys * xs);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in x z y order (roll yaw pitch)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_xzy_quat(versor q, vec3 angles) {
|
||||
float xs = sinf(angles[0] / 2.0f);
|
||||
float xc = cosf(angles[0] / 2.0f);
|
||||
|
||||
float ys = sinf(angles[1] / 2.0f);
|
||||
float yc = cosf(angles[1] / 2.0f);
|
||||
|
||||
float zs = sinf(angles[2] / 2.0f);
|
||||
float zc = cosf(angles[2] / 2.0f);
|
||||
|
||||
glm_quat_init(q,
|
||||
yc * zc * xs + ys * zs * xc,
|
||||
yc * zs * xs + ys * zc * xc,
|
||||
yc * zs * xc - ys * zc * xs,
|
||||
yc * zc * xc - ys * zs * xs);
|
||||
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in y x z order (pitch roll yaw)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_yxz_quat(versor q, vec3 angles) {
|
||||
float xs = sinf(angles[0] / 2.0f);
|
||||
float xc = cosf(angles[0] / 2.0f);
|
||||
|
||||
float ys = sinf(angles[1] / 2.0f);
|
||||
float yc = cosf(angles[1] / 2.0f);
|
||||
|
||||
float zs = sinf(angles[2] / 2.0f);
|
||||
float zc = cosf(angles[2] / 2.0f);
|
||||
|
||||
glm_quat_init(q,
|
||||
zc * xs * yc - zs * xc * ys,
|
||||
zc * xc * ys + zs * xs * yc,
|
||||
zc * xs * ys + zs * xc * yc,
|
||||
zc * xc * yc - zs * xs * ys);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in y z x order (pitch yaw roll)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_yzx_quat(versor q, vec3 angles) {
|
||||
float xs = sinf(angles[0] / 2.0f);
|
||||
float xc = cosf(angles[0] / 2.0f);
|
||||
|
||||
float ys = sinf(angles[1] / 2.0f);
|
||||
float yc = cosf(angles[1] / 2.0f);
|
||||
|
||||
float zs = sinf(angles[2] / 2.0f);
|
||||
float zc = cosf(angles[2] / 2.0f);
|
||||
|
||||
glm_quat_init(q,
|
||||
-xc * zs * ys + xs * zc * yc,
|
||||
xc * zc * ys - xs * zs * yc,
|
||||
xc * zs * yc + xs * zc * ys,
|
||||
xc * zc * yc + xs * zs * ys);
|
||||
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in z x y order (yaw roll pitch)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_zxy_quat(versor q, vec3 angles) {
|
||||
float xs = sinf(angles[0] / 2.0f);
|
||||
float xc = cosf(angles[0] / 2.0f);
|
||||
|
||||
float ys = sinf(angles[1] / 2.0f);
|
||||
float yc = cosf(angles[1] / 2.0f);
|
||||
|
||||
float zs = sinf(angles[2] / 2.0f);
|
||||
float zc = cosf(angles[2] / 2.0f);
|
||||
|
||||
glm_quat_init(q,
|
||||
yc * xs * zc + ys * xc * zs,
|
||||
-yc * xs * zs + ys * xc * zc,
|
||||
yc * xc * zs - ys * xs * zc,
|
||||
yc * xc * zc + ys * xs * zs);
|
||||
|
||||
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in z y x order (yaw pitch roll)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_zyx_quat(versor q, vec3 angles) {
|
||||
float xs = sinf(angles[0] / 2.0f);
|
||||
float xc = cosf(angles[0] / 2.0f);
|
||||
|
||||
float ys = sinf(angles[1] / 2.0f);
|
||||
float yc = cosf(angles[1] / 2.0f);
|
||||
|
||||
float zs = sinf(angles[2] / 2.0f);
|
||||
float zc = cosf(angles[2] / 2.0f);
|
||||
|
||||
glm_quat_init(q,
|
||||
xc * ys * zs + xs * yc * zc,
|
||||
xc * ys * zc - xs * yc * zs,
|
||||
xc * yc * zs + xs * ys * zc,
|
||||
xc * yc * zc - xs * ys * zs);
|
||||
|
||||
}
|
||||
|
||||
|
||||
#endif /* cglm_euler_h */
|
||||
|
||||
@@ -13,12 +13,6 @@
|
||||
Functions:
|
||||
CGLM_INLINE void glm_quat_identity(versor q);
|
||||
CGLM_INLINE void glm_quat_init(versor q, float x, float y, float z, float w);
|
||||
CGLM_INLINE void glm_euler_xyz_quat(versor q, vec3 angles);
|
||||
CGLM_INLINE void glm_euler_xzy_quat(versor q, vec3 angles);
|
||||
CGLM_INLINE void glm_euler_yxz_quat(versor q, vec3 angles);
|
||||
CGLM_INLINE void glm_euler_yzx_quat(versor q, vec3 angles);
|
||||
CGLM_INLINE void glm_euler_zxy_quat(versor q, vec3 angles);
|
||||
CGLM_INLINE void glm_euler_zyx_quat(versor q, vec3 angles);
|
||||
CGLM_INLINE void glm_quat(versor q, float angle, float x, float y, float z);
|
||||
CGLM_INLINE void glm_quatv(versor q, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_quat_copy(versor q, versor dest);
|
||||
@@ -145,168 +139,6 @@ glm_quat_init(versor q, float x, float y, float z, float w) {
|
||||
q[3] = w;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in x y z order (roll pitch yaw)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_xyz_quat(versor q, vec3 angles) {
|
||||
float xs = sinf(angles[0] / 2.0f);
|
||||
float xc = cosf(angles[0] / 2.0f);
|
||||
|
||||
float ys = sinf(angles[1] / 2.0f);
|
||||
float yc = cosf(angles[1] / 2.0f);
|
||||
|
||||
float zs = sinf(angles[2] / 2.0f);
|
||||
float zc = cosf(angles[2] / 2.0f);
|
||||
|
||||
|
||||
glm_quat_init(q,
|
||||
zc * yc * xs - zs * ys * xc,
|
||||
zc * ys * xc + zs * yc * xs,
|
||||
-zc * ys * xs + zs * yc * xc,
|
||||
zc * yc * xc + zs * ys * xs);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in x z y order (roll yaw pitch)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_xzy_quat(versor q, vec3 angles) {
|
||||
float xs = sinf(angles[0] / 2.0f);
|
||||
float xc = cosf(angles[0] / 2.0f);
|
||||
|
||||
float ys = sinf(angles[1] / 2.0f);
|
||||
float yc = cosf(angles[1] / 2.0f);
|
||||
|
||||
float zs = sinf(angles[2] / 2.0f);
|
||||
float zc = cosf(angles[2] / 2.0f);
|
||||
|
||||
glm_quat_init(q,
|
||||
yc * zc * xs + ys * zs * xc,
|
||||
yc * zs * xs + ys * zc * xc,
|
||||
yc * zs * xc - ys * zc * xs,
|
||||
yc * zc * xc - ys * zs * xs);
|
||||
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in y x z order (pitch roll yaw)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_yxz_quat(versor q, vec3 angles) {
|
||||
float xs = sinf(angles[0] / 2.0f);
|
||||
float xc = cosf(angles[0] / 2.0f);
|
||||
|
||||
float ys = sinf(angles[1] / 2.0f);
|
||||
float yc = cosf(angles[1] / 2.0f);
|
||||
|
||||
float zs = sinf(angles[2] / 2.0f);
|
||||
float zc = cosf(angles[2] / 2.0f);
|
||||
|
||||
glm_quat_init(q,
|
||||
zc * xs * yc - zs * xc * ys,
|
||||
zc * xc * ys + zs * xs * yc,
|
||||
zc * xs * ys + zs * xc * yc,
|
||||
zc * xc * yc - zs * xs * ys);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in y z x order (pitch yaw roll)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_yzx_quat(versor q, vec3 angles) {
|
||||
float xs = sinf(angles[0] / 2.0f);
|
||||
float xc = cosf(angles[0] / 2.0f);
|
||||
|
||||
float ys = sinf(angles[1] / 2.0f);
|
||||
float yc = cosf(angles[1] / 2.0f);
|
||||
|
||||
float zs = sinf(angles[2] / 2.0f);
|
||||
float zc = cosf(angles[2] / 2.0f);
|
||||
|
||||
glm_quat_init(q,
|
||||
-xc * zs * ys + xs * zc * yc,
|
||||
xc * zc * ys - xs * zs * yc,
|
||||
xc * zs * yc + xs * zc * ys,
|
||||
xc * zc * yc + xs * zs * ys);
|
||||
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in z x y order (yaw roll pitch)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_zxy_quat(versor q, vec3 angles) {
|
||||
float xs = sinf(angles[0] / 2.0f);
|
||||
float xc = cosf(angles[0] / 2.0f);
|
||||
|
||||
float ys = sinf(angles[1] / 2.0f);
|
||||
float yc = cosf(angles[1] / 2.0f);
|
||||
|
||||
float zs = sinf(angles[2] / 2.0f);
|
||||
float zc = cosf(angles[2] / 2.0f);
|
||||
|
||||
glm_quat_init(q,
|
||||
yc * xs * zc + ys * xc * zs,
|
||||
-yc * xs * zs + ys * xc * zc,
|
||||
yc * xc * zs - ys * xs * zc,
|
||||
yc * xc * zc + ys * xs * zs);
|
||||
|
||||
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in z y x order (yaw pitch roll)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_zyx_quat(versor q, vec3 angles) {
|
||||
float xs = sinf(angles[0] / 2.0f);
|
||||
float xc = cosf(angles[0] / 2.0f);
|
||||
|
||||
float ys = sinf(angles[1] / 2.0f);
|
||||
float yc = cosf(angles[1] / 2.0f);
|
||||
|
||||
float zs = sinf(angles[2] / 2.0f);
|
||||
float zc = cosf(angles[2] / 2.0f);
|
||||
|
||||
glm_quat_init(q,
|
||||
xc * ys * zs + xs * yc * zc,
|
||||
xc * ys * zc - xs * yc * zs,
|
||||
xc * yc * zs + xs * ys * zc,
|
||||
xc * yc * zc - xs * ys * zs);
|
||||
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion with axis vector
|
||||
*
|
||||
|
||||
@@ -26,6 +26,12 @@
|
||||
CGLM_INLINE mat4s glms_euler_zxy(vec3s angles)
|
||||
CGLM_INLINE mat4s glms_euler_zyx(vec3s angles)
|
||||
CGLM_INLINE mat4s glms_euler_by_order(vec3s angles, glm_euler_seq ord)
|
||||
CGLM_INLINE versors glms_euler_xyz_quat(versors q, vec3s angles)
|
||||
CGLM_INLINE versors glms_euler_xzy_quat(versors q, vec3s angles)
|
||||
CGLM_INLINE versors glms_euler_yxz_quat(versors q, vec3s angles)
|
||||
CGLM_INLINE versors glms_euler_yzx_quat(versors q, vec3s angles)
|
||||
CGLM_INLINE versors glms_euler_zxy_quat(versors q, vec3s angles)
|
||||
CGLM_INLINE versors glms_euler_zyx_quat(versors q, vec3s angles)
|
||||
*/
|
||||
|
||||
#ifndef cglms_euler_h
|
||||
@@ -149,4 +155,95 @@ glms_euler_by_order(vec3s angles, glm_euler_seq ord) {
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in x y z order (roll pitch yaw)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_euler_xyz_quat(versors q, vec3s angles) {
|
||||
versors dest;
|
||||
glm_euler_xyz_quat(dest.raw, angles.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in x z y order (roll yaw pitch)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_euler_xzy_quat(versors q, vec3s angles) {
|
||||
versors dest;
|
||||
glm_euler_xzy_quat(dest.raw, angles.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in y x z order (pitch roll yaw)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_euler_yxz_quat(versors q, vec3s angles) {
|
||||
versors dest;
|
||||
glm_euler_yxz_quat(dest.raw, angles.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in y z x order (pitch yaw roll)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_euler_yzx_quat(versors q, vec3s angles) {
|
||||
versors dest;
|
||||
glm_euler_yzx_quat(dest.raw, angles.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in z x y order (yaw roll pitch)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_euler_zxy_quat(versors q, vec3s angles) {
|
||||
versors dest;
|
||||
glm_euler_zxy_quat(dest.raw, angles.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in z y x order (yaw pitch roll)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_euler_zyx_quat(versors q, vec3s angles) {
|
||||
versors dest;
|
||||
glm_euler_zyx_quat(dest.raw, angles.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
|
||||
#endif /* cglms_euler_h */
|
||||
|
||||
@@ -14,12 +14,6 @@
|
||||
CGLM_INLINE versors glms_quat_identity(void)
|
||||
CGLM_INLINE void glms_quat_identity_array(versor *q, size_t count)
|
||||
CGLM_INLINE versors glms_quat_init(float x, float y, float z, float w)
|
||||
CGLM_INLINE versors glms_euler_xyz_quat(versors q, vec3s angles)
|
||||
CGLM_INLINE versors glms_euler_xzy_quat(versors q, vec3s angles)
|
||||
CGLM_INLINE versors glms_euler_yxz_quat(versors q, vec3s angles)
|
||||
CGLM_INLINE versors glms_euler_yzx_quat(versors q, vec3s angles)
|
||||
CGLM_INLINE versors glms_euler_zxy_quat(versors q, vec3s angles)
|
||||
CGLM_INLINE versors glms_euler_zyx_quat(versors q, vec3s angles)
|
||||
CGLM_INLINE versors glms_quatv(float angle, vec3s axis)
|
||||
CGLM_INLINE versors glms_quat(float angle, float x, float y, float z)
|
||||
CGLM_INLINE versors glms_quat_from_vecs(vec3s a, vec3s b)
|
||||
@@ -126,97 +120,6 @@ glms_quat_(init)(float x, float y, float z, float w) {
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in x y z order (roll pitch yaw)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_euler_xyz_quat(versors q, vec3s angles) {
|
||||
versors dest;
|
||||
glm_euler_xyz_quat(dest.raw, angles.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in x z y order (roll yaw pitch)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_euler_xzy_quat(versors q, vec3s angles) {
|
||||
versors dest;
|
||||
glm_euler_xzy_quat(dest.raw, angles.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in y x z order (pitch roll yaw)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_euler_yxz_quat(versors q, vec3s angles) {
|
||||
versors dest;
|
||||
glm_euler_yxz_quat(dest.raw, angles.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in y z x order (pitch yaw roll)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_euler_yzx_quat(versors q, vec3s angles) {
|
||||
versors dest;
|
||||
glm_euler_yzx_quat(dest.raw, angles.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in z x y order (yaw roll pitch)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_euler_zxy_quat(versors q, vec3s angles) {
|
||||
versors dest;
|
||||
glm_euler_zxy_quat(dest.raw, angles.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion using rotation angles and does
|
||||
* rotations in z y x order (yaw pitch roll)
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angles x y z (radians)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_euler_zyx_quat(versors q, vec3s angles) {
|
||||
versors dest;
|
||||
glm_euler_zyx_quat(dest.raw, angles.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion with axis vector
|
||||
*
|
||||
|
||||
37
src/euler.c
37
src/euler.c
@@ -61,3 +61,40 @@ void
|
||||
glmc_euler_by_order(vec3 angles, glm_euler_seq axis, mat4 dest) {
|
||||
glm_euler_by_order(angles, axis, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_xyz_quat(versor q, vec3 angles) {
|
||||
glm_euler_xyz_quat(q, angles);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_xzy_quat(versor q, vec3 angles) {
|
||||
glm_euler_xzy_quat(q, angles);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_yxz_quat(versor q, vec3 angles) {
|
||||
glm_euler_yxz_quat(q, angles);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_yzx_quat(versor q, vec3 angles) {
|
||||
glm_euler_yzx_quat(q, angles);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_zxy_quat(versor q, vec3 angles) {
|
||||
glm_euler_zxy_quat(q, angles);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_zyx_quat(versor q, vec3 angles) {
|
||||
glm_euler_zyx_quat(q, angles);
|
||||
}
|
||||
|
||||
|
||||
36
src/quat.c
36
src/quat.c
@@ -26,42 +26,6 @@ glmc_quat_init(versor q, float x, float y, float z, float w) {
|
||||
glm_quat_init(q, x, y, z, w);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_xyz_quat(versor q, vec3 angles) {
|
||||
glm_euler_xyz_quat(q, angles);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_xzy_quat(versor q, vec3 angles) {
|
||||
glm_euler_xzy_quat(q, angles);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_yxz_quat(versor q, vec3 angles) {
|
||||
glm_euler_yxz_quat(q, angles);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_yzx_quat(versor q, vec3 angles) {
|
||||
glm_euler_yzx_quat(q, angles);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_zxy_quat(versor q, vec3 angles) {
|
||||
glm_euler_zxy_quat(q, angles);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_zyx_quat(versor q, vec3 angles) {
|
||||
glm_euler_zyx_quat(q, angles);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat(versor q, float angle, float x, float y, float z) {
|
||||
|
||||
@@ -7,6 +7,545 @@
|
||||
|
||||
#include "test_common.h"
|
||||
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_xyz_quat) {
|
||||
for (int i = 0; i < 100; i++) {
|
||||
/*random angles for testing*/
|
||||
vec3 angles;
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in xyz order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_xyz_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
|
||||
|
||||
/*Start gimbal lock tests*/
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
/* angles that will cause gimbal lock*/
|
||||
vec3 angles = {x, y, z};
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in xyz order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_xyz_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
}
|
||||
}
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_xzy_quat) {
|
||||
for (int i = 0; i < 100; i++) {
|
||||
/*random angles for testing*/
|
||||
vec3 angles;
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in xzy order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_xzy_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
|
||||
/*Start gimbal lock tests*/
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
/* angles that will cause gimbal lock*/
|
||||
vec3 angles = {x, y, z};
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in xyz order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_xzy_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_yxz_quat) {
|
||||
for (int i = 0; i < 100; i++) {
|
||||
/*random angles for testing*/
|
||||
vec3 angles;
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in yxz order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_yxz_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
|
||||
/*Start gimbal lock tests*/
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
/* angles that will cause gimbal lock*/
|
||||
vec3 angles = {x, y, z};
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in yxz order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_yxz_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_yzx_quat) {
|
||||
for (int i = 0; i < 100; i++) {
|
||||
/*random angles for testing*/
|
||||
vec3 angles;
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in yzx order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_yzx_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
|
||||
/*Start gimbal lock tests*/
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
/* angles that will cause gimbal lock*/
|
||||
vec3 angles = {x, y, z};
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in yzx order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_yzx_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_zxy_quat) {
|
||||
for (int i = 0; i < 100; i++) {
|
||||
/*random angles for testing*/
|
||||
vec3 angles;
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in zxy order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_zxy_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
|
||||
/*Start gimbal lock tests*/
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
/* angles that will cause gimbal lock*/
|
||||
vec3 angles = {x, y, z};
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in zxy order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_zxy_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_zyx_quat) {
|
||||
for (int i = 0; i < 100; i++) {
|
||||
/*random angles for testing*/
|
||||
vec3 angles;
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in zyx order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_zyx_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
|
||||
/*Start gimbal lock tests*/
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
|
||||
/* angles that will cause gimbal lock*/
|
||||
vec3 angles = {x, y, z};
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in zyx order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_zyx_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(euler) {
|
||||
mat4 rot1, rot2;
|
||||
vec3 inAngles, outAngles;
|
||||
@@ -41,5 +580,14 @@ TEST_IMPL(euler) {
|
||||
glmc_euler_xyz(outAngles, rot2);
|
||||
ASSERTIFY(test_assert_mat4_eq(rot1, rot2))
|
||||
|
||||
/* somehow when I try to make tests outside of this thing,
|
||||
it won't work. So they stay here for now */
|
||||
ASSERTIFY(test_GLM_PREFIXeuler_xyz_quat());
|
||||
ASSERTIFY(test_GLM_PREFIXeuler_xzy_quat());
|
||||
ASSERTIFY(test_GLM_PREFIXeuler_yxz_quat());
|
||||
ASSERTIFY(test_GLM_PREFIXeuler_yzx_quat());
|
||||
ASSERTIFY(test_GLM_PREFIXeuler_zxy_quat());
|
||||
ASSERTIFY(test_GLM_PREFIXeuler_zyx_quat());
|
||||
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
@@ -102,544 +102,6 @@ TEST_IMPL(GLM_PREFIX, quat_init) {
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_xyz_quat) {
|
||||
for (int i = 0; i < 100; i++) {
|
||||
/*random angles for testing*/
|
||||
vec3 angles;
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in xyz order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_xyz_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
|
||||
|
||||
/*Start gimbal lock tests*/
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
/* angles that will cause gimbal lock*/
|
||||
vec3 angles = {x, y, z};
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in xyz order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_xyz_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
}
|
||||
}
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_xzy_quat) {
|
||||
for (int i = 0; i < 100; i++) {
|
||||
/*random angles for testing*/
|
||||
vec3 angles;
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in xzy order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_xzy_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
|
||||
/*Start gimbal lock tests*/
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
/* angles that will cause gimbal lock*/
|
||||
vec3 angles = {x, y, z};
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in xyz order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_xzy_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_yxz_quat) {
|
||||
for (int i = 0; i < 100; i++) {
|
||||
/*random angles for testing*/
|
||||
vec3 angles;
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in yxz order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_yxz_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
|
||||
/*Start gimbal lock tests*/
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
/* angles that will cause gimbal lock*/
|
||||
vec3 angles = {x, y, z};
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in yxz order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_yxz_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_yzx_quat) {
|
||||
for (int i = 0; i < 100; i++) {
|
||||
/*random angles for testing*/
|
||||
vec3 angles;
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in yzx order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_yzx_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
|
||||
/*Start gimbal lock tests*/
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
/* angles that will cause gimbal lock*/
|
||||
vec3 angles = {x, y, z};
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in yzx order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_yzx_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_zxy_quat) {
|
||||
for (int i = 0; i < 100; i++) {
|
||||
/*random angles for testing*/
|
||||
vec3 angles;
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in zxy order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_zxy_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
|
||||
/*Start gimbal lock tests*/
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
/* angles that will cause gimbal lock*/
|
||||
vec3 angles = {x, y, z};
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in zxy order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_zxy_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, euler_zyx_quat) {
|
||||
for (int i = 0; i < 100; i++) {
|
||||
/*random angles for testing*/
|
||||
vec3 angles;
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
test_rand_vec3(angles);
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in zyx order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_zyx_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
|
||||
/*Start gimbal lock tests*/
|
||||
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
|
||||
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
|
||||
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
|
||||
|
||||
/* angles that will cause gimbal lock*/
|
||||
vec3 angles = {x, y, z};
|
||||
|
||||
/*quaternion representations for rotations*/
|
||||
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
vec3 axis_x = {1.0f, 0.0f, 0.0f};
|
||||
vec3 axis_y = {0.0f, 1.0f, 0.0f};
|
||||
vec3 axis_z = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
versor result;
|
||||
|
||||
/*create the rotation quaternions using the angles and axises*/
|
||||
glm_quatv(rot_x, angles[0], axis_x);
|
||||
glm_quatv(rot_y, angles[1], axis_y);
|
||||
glm_quatv(rot_z, angles[2], axis_z);
|
||||
|
||||
/*apply the rotations to a unit quaternion in zyx order*/
|
||||
versor tmp;
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_z, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_y, tmp, expected);
|
||||
glm_quat_copy(expected, tmp);
|
||||
glm_quat_mul(rot_x, tmp, expected);
|
||||
|
||||
|
||||
/*use my function to get the quaternion*/
|
||||
glm_euler_zyx_quat(result, angles);
|
||||
|
||||
/*verify if the magnitude of the quaternion stays 1*/
|
||||
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
|
||||
|
||||
ASSERTIFY(test_assert_quat_eq(result, expected))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_SUCCESS
|
||||
}
|
||||
|
||||
TEST_IMPL(GLM_PREFIX, quatv) {
|
||||
versor q1 = {1.0f, 2.0f, 3.0f, 4.0f};
|
||||
vec3 v1, v2;
|
||||
|
||||
21
test/tests.h
21
test/tests.h
@@ -361,6 +361,12 @@ TEST_DECLARE(clamp)
|
||||
|
||||
/* euler */
|
||||
TEST_DECLARE(euler)
|
||||
TEST_DECLARE(glm_euler_xyz_quat)
|
||||
TEST_DECLARE(glm_euler_xzy_quat)
|
||||
TEST_DECLARE(glm_euler_yxz_quat)
|
||||
TEST_DECLARE(glm_euler_yzx_quat)
|
||||
TEST_DECLARE(glm_euler_zxy_quat)
|
||||
TEST_DECLARE(glm_euler_zyx_quat)
|
||||
|
||||
/* ray */
|
||||
TEST_DECLARE(glm_ray_triangle)
|
||||
@@ -374,12 +380,6 @@ TEST_DECLARE(glm_quat_identity)
|
||||
TEST_DECLARE(glm_quat_identity_array)
|
||||
TEST_DECLARE(glm_quat_init)
|
||||
TEST_DECLARE(glm_quatv)
|
||||
TEST_DECLARE(glm_euler_xyz_quat)
|
||||
TEST_DECLARE(glm_euler_xzy_quat)
|
||||
TEST_DECLARE(glm_euler_yxz_quat)
|
||||
TEST_DECLARE(glm_euler_yzx_quat)
|
||||
TEST_DECLARE(glm_euler_zxy_quat)
|
||||
TEST_DECLARE(glm_euler_zyx_quat)
|
||||
TEST_DECLARE(glm_quat)
|
||||
TEST_DECLARE(glm_quat_copy)
|
||||
TEST_DECLARE(glm_quat_norm)
|
||||
@@ -1341,9 +1341,10 @@ TEST_LIST {
|
||||
|
||||
/* utils */
|
||||
TEST_ENTRY(clamp)
|
||||
|
||||
|
||||
/* euler */
|
||||
TEST_ENTRY(euler)
|
||||
|
||||
|
||||
/* ray */
|
||||
TEST_ENTRY(glm_ray_triangle)
|
||||
@@ -1357,12 +1358,6 @@ TEST_LIST {
|
||||
TEST_ENTRY(glm_quat_identity_array)
|
||||
TEST_ENTRY(glm_quat_init)
|
||||
TEST_ENTRY(glm_quatv)
|
||||
TEST_ENTRY(glm_euler_xyz_quat)
|
||||
TEST_ENTRY(glm_euler_xzy_quat)
|
||||
TEST_ENTRY(glm_euler_yxz_quat)
|
||||
TEST_ENTRY(glm_euler_yzx_quat)
|
||||
TEST_ENTRY(glm_euler_zxy_quat)
|
||||
TEST_ENTRY(glm_euler_zyx_quat)
|
||||
TEST_ENTRY(glm_quat)
|
||||
TEST_ENTRY(glm_quat_copy)
|
||||
TEST_ENTRY(glm_quat_norm)
|
||||
|
||||
Reference in New Issue
Block a user