moved all my stuff to euler because it fits there better. Also, had to move my tests into a single euler test because it wouldn't work outside that one test. Maybe later I will create test_euler.h like how test_quat.h works

This commit is contained in:
John Choi
2023-12-09 00:38:38 -06:00
parent 666d692dfb
commit 036fd4848b
11 changed files with 883 additions and 876 deletions

View File

@@ -49,6 +49,31 @@ CGLM_EXPORT
void
glmc_euler_by_order(vec3 angles, glm_euler_seq axis, mat4 dest);
CGLM_EXPORT
void
glmc_euler_xyz_quat(versor q, vec3 angles);
CGLM_EXPORT
void
glmc_euler_xzy_quat(versor q, vec3 angles);
CGLM_EXPORT
void
glmc_euler_yxz_quat(versor q, vec3 angles);
CGLM_EXPORT
void
glmc_euler_yzx_quat(versor q, vec3 angles);
CGLM_EXPORT
void
glmc_euler_zxy_quat(versor q, vec3 angles);
CGLM_EXPORT
void
glmc_euler_zyx_quat(versor q, vec3 angles);
#ifdef __cplusplus
}
#endif

View File

@@ -25,30 +25,6 @@ CGLM_EXPORT
void
glmc_quat_init(versor q, float x, float y, float z, float w);
CGLM_EXPORT
void
glmc_euler_xyz_quat(versor q, vec3 angles);
CGLM_EXPORT
void
glmc_euler_xzy_quat(versor q, vec3 angles);
CGLM_EXPORT
void
glmc_euler_yxz_quat(versor q, vec3 angles);
CGLM_EXPORT
void
glmc_euler_yzx_quat(versor q, vec3 angles);
CGLM_EXPORT
void
glmc_euler_zxy_quat(versor q, vec3 angles);
CGLM_EXPORT
void
glmc_euler_zyx_quat(versor q, vec3 angles);
CGLM_EXPORT
void
glmc_quat(versor q, float angle, float x, float y, float z);

View File

@@ -30,6 +30,12 @@
CGLM_INLINE void glm_euler_by_order(vec3 angles,
glm_euler_seq ord,
mat4 dest);
CGLM_INLINE void glm_euler_xyz_quat(versor q, vec3 angles);
CGLM_INLINE void glm_euler_xzy_quat(versor q, vec3 angles);
CGLM_INLINE void glm_euler_yxz_quat(versor q, vec3 angles);
CGLM_INLINE void glm_euler_yzx_quat(versor q, vec3 angles);
CGLM_INLINE void glm_euler_zxy_quat(versor q, vec3 angles);
CGLM_INLINE void glm_euler_zyx_quat(versor q, vec3 angles);
*/
#ifndef cglm_euler_h
@@ -449,5 +455,167 @@ glm_euler_by_order(vec3 angles, glm_euler_seq ord, mat4 dest) {
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in x y z order (roll pitch yaw)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_xyz_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
zc * yc * xs - zs * ys * xc,
zc * ys * xc + zs * yc * xs,
-zc * ys * xs + zs * yc * xc,
zc * yc * xc + zs * ys * xs);
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in x z y order (roll yaw pitch)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_xzy_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
yc * zc * xs + ys * zs * xc,
yc * zs * xs + ys * zc * xc,
yc * zs * xc - ys * zc * xs,
yc * zc * xc - ys * zs * xs);
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in y x z order (pitch roll yaw)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_yxz_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
zc * xs * yc - zs * xc * ys,
zc * xc * ys + zs * xs * yc,
zc * xs * ys + zs * xc * yc,
zc * xc * yc - zs * xs * ys);
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in y z x order (pitch yaw roll)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_yzx_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
-xc * zs * ys + xs * zc * yc,
xc * zc * ys - xs * zs * yc,
xc * zs * yc + xs * zc * ys,
xc * zc * yc + xs * zs * ys);
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in z x y order (yaw roll pitch)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_zxy_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
yc * xs * zc + ys * xc * zs,
-yc * xs * zs + ys * xc * zc,
yc * xc * zs - ys * xs * zc,
yc * xc * zc + ys * xs * zs);
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in z y x order (yaw pitch roll)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_zyx_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
xc * ys * zs + xs * yc * zc,
xc * ys * zc - xs * yc * zs,
xc * yc * zs + xs * ys * zc,
xc * yc * zc - xs * ys * zs);
}
#endif /* cglm_euler_h */

View File

@@ -13,12 +13,6 @@
Functions:
CGLM_INLINE void glm_quat_identity(versor q);
CGLM_INLINE void glm_quat_init(versor q, float x, float y, float z, float w);
CGLM_INLINE void glm_euler_xyz_quat(versor q, vec3 angles);
CGLM_INLINE void glm_euler_xzy_quat(versor q, vec3 angles);
CGLM_INLINE void glm_euler_yxz_quat(versor q, vec3 angles);
CGLM_INLINE void glm_euler_yzx_quat(versor q, vec3 angles);
CGLM_INLINE void glm_euler_zxy_quat(versor q, vec3 angles);
CGLM_INLINE void glm_euler_zyx_quat(versor q, vec3 angles);
CGLM_INLINE void glm_quat(versor q, float angle, float x, float y, float z);
CGLM_INLINE void glm_quatv(versor q, float angle, vec3 axis);
CGLM_INLINE void glm_quat_copy(versor q, versor dest);
@@ -145,168 +139,6 @@ glm_quat_init(versor q, float x, float y, float z, float w) {
q[3] = w;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in x y z order (roll pitch yaw)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_xyz_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
zc * yc * xs - zs * ys * xc,
zc * ys * xc + zs * yc * xs,
-zc * ys * xs + zs * yc * xc,
zc * yc * xc + zs * ys * xs);
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in x z y order (roll yaw pitch)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_xzy_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
yc * zc * xs + ys * zs * xc,
yc * zs * xs + ys * zc * xc,
yc * zs * xc - ys * zc * xs,
yc * zc * xc - ys * zs * xs);
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in y x z order (pitch roll yaw)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_yxz_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
zc * xs * yc - zs * xc * ys,
zc * xc * ys + zs * xs * yc,
zc * xs * ys + zs * xc * yc,
zc * xc * yc - zs * xs * ys);
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in y z x order (pitch yaw roll)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_yzx_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
-xc * zs * ys + xs * zc * yc,
xc * zc * ys - xs * zs * yc,
xc * zs * yc + xs * zc * ys,
xc * zc * yc + xs * zs * ys);
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in z x y order (yaw roll pitch)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_zxy_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
yc * xs * zc + ys * xc * zs,
-yc * xs * zs + ys * xc * zc,
yc * xc * zs - ys * xs * zc,
yc * xc * zc + ys * xs * zs);
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in z y x order (yaw pitch roll)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
void
glm_euler_zyx_quat(versor q, vec3 angles) {
float xs = sinf(angles[0] / 2.0f);
float xc = cosf(angles[0] / 2.0f);
float ys = sinf(angles[1] / 2.0f);
float yc = cosf(angles[1] / 2.0f);
float zs = sinf(angles[2] / 2.0f);
float zc = cosf(angles[2] / 2.0f);
glm_quat_init(q,
xc * ys * zs + xs * yc * zc,
xc * ys * zc - xs * yc * zs,
xc * yc * zs + xs * ys * zc,
xc * yc * zc - xs * ys * zs);
}
/*!
* @brief creates NEW quaternion with axis vector
*

View File

@@ -26,6 +26,12 @@
CGLM_INLINE mat4s glms_euler_zxy(vec3s angles)
CGLM_INLINE mat4s glms_euler_zyx(vec3s angles)
CGLM_INLINE mat4s glms_euler_by_order(vec3s angles, glm_euler_seq ord)
CGLM_INLINE versors glms_euler_xyz_quat(versors q, vec3s angles)
CGLM_INLINE versors glms_euler_xzy_quat(versors q, vec3s angles)
CGLM_INLINE versors glms_euler_yxz_quat(versors q, vec3s angles)
CGLM_INLINE versors glms_euler_yzx_quat(versors q, vec3s angles)
CGLM_INLINE versors glms_euler_zxy_quat(versors q, vec3s angles)
CGLM_INLINE versors glms_euler_zyx_quat(versors q, vec3s angles)
*/
#ifndef cglms_euler_h
@@ -149,4 +155,95 @@ glms_euler_by_order(vec3s angles, glm_euler_seq ord) {
return dest;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in x y z order (roll pitch yaw)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
versors
glms_euler_xyz_quat(versors q, vec3s angles) {
versors dest;
glm_euler_xyz_quat(dest.raw, angles.raw);
return dest;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in x z y order (roll yaw pitch)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
versors
glms_euler_xzy_quat(versors q, vec3s angles) {
versors dest;
glm_euler_xzy_quat(dest.raw, angles.raw);
return dest;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in y x z order (pitch roll yaw)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
versors
glms_euler_yxz_quat(versors q, vec3s angles) {
versors dest;
glm_euler_yxz_quat(dest.raw, angles.raw);
return dest;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in y z x order (pitch yaw roll)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
versors
glms_euler_yzx_quat(versors q, vec3s angles) {
versors dest;
glm_euler_yzx_quat(dest.raw, angles.raw);
return dest;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in z x y order (yaw roll pitch)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
versors
glms_euler_zxy_quat(versors q, vec3s angles) {
versors dest;
glm_euler_zxy_quat(dest.raw, angles.raw);
return dest;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in z y x order (yaw pitch roll)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
versors
glms_euler_zyx_quat(versors q, vec3s angles) {
versors dest;
glm_euler_zyx_quat(dest.raw, angles.raw);
return dest;
}
#endif /* cglms_euler_h */

View File

@@ -14,12 +14,6 @@
CGLM_INLINE versors glms_quat_identity(void)
CGLM_INLINE void glms_quat_identity_array(versor *q, size_t count)
CGLM_INLINE versors glms_quat_init(float x, float y, float z, float w)
CGLM_INLINE versors glms_euler_xyz_quat(versors q, vec3s angles)
CGLM_INLINE versors glms_euler_xzy_quat(versors q, vec3s angles)
CGLM_INLINE versors glms_euler_yxz_quat(versors q, vec3s angles)
CGLM_INLINE versors glms_euler_yzx_quat(versors q, vec3s angles)
CGLM_INLINE versors glms_euler_zxy_quat(versors q, vec3s angles)
CGLM_INLINE versors glms_euler_zyx_quat(versors q, vec3s angles)
CGLM_INLINE versors glms_quatv(float angle, vec3s axis)
CGLM_INLINE versors glms_quat(float angle, float x, float y, float z)
CGLM_INLINE versors glms_quat_from_vecs(vec3s a, vec3s b)
@@ -126,97 +120,6 @@ glms_quat_(init)(float x, float y, float z, float w) {
return dest;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in x y z order (roll pitch yaw)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
versors
glms_euler_xyz_quat(versors q, vec3s angles) {
versors dest;
glm_euler_xyz_quat(dest.raw, angles.raw);
return dest;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in x z y order (roll yaw pitch)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
versors
glms_euler_xzy_quat(versors q, vec3s angles) {
versors dest;
glm_euler_xzy_quat(dest.raw, angles.raw);
return dest;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in y x z order (pitch roll yaw)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
versors
glms_euler_yxz_quat(versors q, vec3s angles) {
versors dest;
glm_euler_yxz_quat(dest.raw, angles.raw);
return dest;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in y z x order (pitch yaw roll)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
versors
glms_euler_yzx_quat(versors q, vec3s angles) {
versors dest;
glm_euler_yzx_quat(dest.raw, angles.raw);
return dest;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in z x y order (yaw roll pitch)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
versors
glms_euler_zxy_quat(versors q, vec3s angles) {
versors dest;
glm_euler_zxy_quat(dest.raw, angles.raw);
return dest;
}
/*!
* @brief creates NEW quaternion using rotation angles and does
* rotations in z y x order (yaw pitch roll)
*
* @param[out] q quaternion
* @param[in] angle angles x y z (radians)
*/
CGLM_INLINE
versors
glms_euler_zyx_quat(versors q, vec3s angles) {
versors dest;
glm_euler_zyx_quat(dest.raw, angles.raw);
return dest;
}
/*!
* @brief creates NEW quaternion with axis vector
*

View File

@@ -61,3 +61,40 @@ void
glmc_euler_by_order(vec3 angles, glm_euler_seq axis, mat4 dest) {
glm_euler_by_order(angles, axis, dest);
}
CGLM_EXPORT
void
glmc_euler_xyz_quat(versor q, vec3 angles) {
glm_euler_xyz_quat(q, angles);
}
CGLM_EXPORT
void
glmc_euler_xzy_quat(versor q, vec3 angles) {
glm_euler_xzy_quat(q, angles);
}
CGLM_EXPORT
void
glmc_euler_yxz_quat(versor q, vec3 angles) {
glm_euler_yxz_quat(q, angles);
}
CGLM_EXPORT
void
glmc_euler_yzx_quat(versor q, vec3 angles) {
glm_euler_yzx_quat(q, angles);
}
CGLM_EXPORT
void
glmc_euler_zxy_quat(versor q, vec3 angles) {
glm_euler_zxy_quat(q, angles);
}
CGLM_EXPORT
void
glmc_euler_zyx_quat(versor q, vec3 angles) {
glm_euler_zyx_quat(q, angles);
}

View File

@@ -26,42 +26,6 @@ glmc_quat_init(versor q, float x, float y, float z, float w) {
glm_quat_init(q, x, y, z, w);
}
CGLM_EXPORT
void
glmc_euler_xyz_quat(versor q, vec3 angles) {
glm_euler_xyz_quat(q, angles);
}
CGLM_EXPORT
void
glmc_euler_xzy_quat(versor q, vec3 angles) {
glm_euler_xzy_quat(q, angles);
}
CGLM_EXPORT
void
glmc_euler_yxz_quat(versor q, vec3 angles) {
glm_euler_yxz_quat(q, angles);
}
CGLM_EXPORT
void
glmc_euler_yzx_quat(versor q, vec3 angles) {
glm_euler_yzx_quat(q, angles);
}
CGLM_EXPORT
void
glmc_euler_zxy_quat(versor q, vec3 angles) {
glm_euler_zxy_quat(q, angles);
}
CGLM_EXPORT
void
glmc_euler_zyx_quat(versor q, vec3 angles) {
glm_euler_zyx_quat(q, angles);
}
CGLM_EXPORT
void
glmc_quat(versor q, float angle, float x, float y, float z) {

View File

@@ -7,6 +7,545 @@
#include "test_common.h"
TEST_IMPL(GLM_PREFIX, euler_xyz_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xyz order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_xyz_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xyz order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_xyz_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_xzy_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xzy order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_xzy_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xyz order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_xzy_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_yxz_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in yxz order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_yxz_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in yxz order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_yxz_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_yzx_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in yzx order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_yzx_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in yzx order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_yzx_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_zxy_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in zxy order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_zxy_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in zxy order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_zxy_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_zyx_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in zyx order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_zyx_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in zyx order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_zyx_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(euler) {
mat4 rot1, rot2;
vec3 inAngles, outAngles;
@@ -41,5 +580,14 @@ TEST_IMPL(euler) {
glmc_euler_xyz(outAngles, rot2);
ASSERTIFY(test_assert_mat4_eq(rot1, rot2))
/* somehow when I try to make tests outside of this thing,
it won't work. So they stay here for now */
ASSERTIFY(test_GLM_PREFIXeuler_xyz_quat());
ASSERTIFY(test_GLM_PREFIXeuler_xzy_quat());
ASSERTIFY(test_GLM_PREFIXeuler_yxz_quat());
ASSERTIFY(test_GLM_PREFIXeuler_yzx_quat());
ASSERTIFY(test_GLM_PREFIXeuler_zxy_quat());
ASSERTIFY(test_GLM_PREFIXeuler_zyx_quat());
TEST_SUCCESS
}

View File

@@ -102,544 +102,6 @@ TEST_IMPL(GLM_PREFIX, quat_init) {
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_xyz_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xyz order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_xyz_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xyz order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_xyz_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_xzy_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xzy order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_xzy_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in xyz order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_xzy_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_yxz_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in yxz order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_yxz_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in yxz order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_yxz_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_yzx_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in yzx order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_yzx_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in yzx order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_yzx_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_zxy_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in zxy order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_zxy_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in zxy order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_zxy_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, euler_zyx_quat) {
for (int i = 0; i < 100; i++) {
/*random angles for testing*/
vec3 angles;
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
test_rand_vec3(angles);
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in zyx order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_zyx_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
/*Start gimbal lock tests*/
for (float x = -90.0f; x <= 90.0f; x += 90.0f) {
for (float y = -90.0f; y <= 90.0f; y += 90.0f) {
for (float z = -90.0f; z <= 90.0f; z += 90.0f) {
/* angles that will cause gimbal lock*/
vec3 angles = {x, y, z};
/*quaternion representations for rotations*/
versor rot_x = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_y = {0.0f, 0.0f, 0.0f, 1.0f};
versor rot_z = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 axis_x = {1.0f, 0.0f, 0.0f};
vec3 axis_y = {0.0f, 1.0f, 0.0f};
vec3 axis_z = {0.0f, 0.0f, 1.0f};
versor expected = {0.0f, 0.0f, 0.0f, 1.0f};
versor result;
/*create the rotation quaternions using the angles and axises*/
glm_quatv(rot_x, angles[0], axis_x);
glm_quatv(rot_y, angles[1], axis_y);
glm_quatv(rot_z, angles[2], axis_z);
/*apply the rotations to a unit quaternion in zyx order*/
versor tmp;
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_z, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_y, tmp, expected);
glm_quat_copy(expected, tmp);
glm_quat_mul(rot_x, tmp, expected);
/*use my function to get the quaternion*/
glm_euler_zyx_quat(result, angles);
/*verify if the magnitude of the quaternion stays 1*/
ASSERT(test_eq(glm_quat_norm(result), 1.0f))
ASSERTIFY(test_assert_quat_eq(result, expected))
}
}
}
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, quatv) {
versor q1 = {1.0f, 2.0f, 3.0f, 4.0f};
vec3 v1, v2;

View File

@@ -361,6 +361,12 @@ TEST_DECLARE(clamp)
/* euler */
TEST_DECLARE(euler)
TEST_DECLARE(glm_euler_xyz_quat)
TEST_DECLARE(glm_euler_xzy_quat)
TEST_DECLARE(glm_euler_yxz_quat)
TEST_DECLARE(glm_euler_yzx_quat)
TEST_DECLARE(glm_euler_zxy_quat)
TEST_DECLARE(glm_euler_zyx_quat)
/* ray */
TEST_DECLARE(glm_ray_triangle)
@@ -374,12 +380,6 @@ TEST_DECLARE(glm_quat_identity)
TEST_DECLARE(glm_quat_identity_array)
TEST_DECLARE(glm_quat_init)
TEST_DECLARE(glm_quatv)
TEST_DECLARE(glm_euler_xyz_quat)
TEST_DECLARE(glm_euler_xzy_quat)
TEST_DECLARE(glm_euler_yxz_quat)
TEST_DECLARE(glm_euler_yzx_quat)
TEST_DECLARE(glm_euler_zxy_quat)
TEST_DECLARE(glm_euler_zyx_quat)
TEST_DECLARE(glm_quat)
TEST_DECLARE(glm_quat_copy)
TEST_DECLARE(glm_quat_norm)
@@ -1341,9 +1341,10 @@ TEST_LIST {
/* utils */
TEST_ENTRY(clamp)
/* euler */
TEST_ENTRY(euler)
/* ray */
TEST_ENTRY(glm_ray_triangle)
@@ -1357,12 +1358,6 @@ TEST_LIST {
TEST_ENTRY(glm_quat_identity_array)
TEST_ENTRY(glm_quat_init)
TEST_ENTRY(glm_quatv)
TEST_ENTRY(glm_euler_xyz_quat)
TEST_ENTRY(glm_euler_xzy_quat)
TEST_ENTRY(glm_euler_yxz_quat)
TEST_ENTRY(glm_euler_yzx_quat)
TEST_ENTRY(glm_euler_zxy_quat)
TEST_ENTRY(glm_euler_zyx_quat)
TEST_ENTRY(glm_quat)
TEST_ENTRY(glm_quat_copy)
TEST_ENTRY(glm_quat_norm)