update docs, add clarifications for affine transforms

This commit is contained in:
Recep Aslantas
2018-04-17 15:42:24 +03:00
parent 33e951fe2e
commit 27ab6a7dd0
4 changed files with 148 additions and 5 deletions

View File

@@ -5,6 +5,8 @@ affine transforms
Header: cglm/affine.h
Initialize Transform Matrices
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functions with **_make** prefix expect you don't have a matrix and they create
a matrix for you. You don't need to pass identity matrix.
@@ -15,6 +17,96 @@ before sending to transfrom functions.
There are also functions to decompose transform matrix. These functions can't
decompose matrix after projected.
Rotation Center
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Rotating functions uses origin as rotation center (pivot/anchor point),
since scale factors are stored in rotation matrix, same may also true for scalling.
cglm provides some functions for rotating around at given point e.g.
**glm_rotate_at**, **glm_quat_rotate_at**. Use them or follow next section for algorihm ("Rotate or Scale around specific Point (Pivot Point / Anchor Point)").
Rotate or Scale around specific Point (Anchor Point)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you want to rotate model around arbibtrary point follow these steps:
1. Move model from pivot point to origin: **translate(-pivot.x, -pivot.y, -pivot.z)**
2. Apply rotation (or scaling maybe)
3. Move model back from origin to pivot (reverse of step-1): **translate(pivot.x, pivot.y, pivot.z)**
**glm_rotate_at**, **glm_quat_rotate_at** and their helper functions works that way.
Transforms Order
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is important to understand this part especially if you call transform
functions multiple times
`glm_translate`, `glm_rotate`, `glm_scale` and `glm_quat_rotate` and their
helpers functions works like this (cglm may provide reverse order too as alternative in the future):
.. code-block:: c
:linenos:
TransformMatrix = TransformMatrix * TraslateMatrix; // glm_translate()
TransformMatrix = TransformMatrix * RotateMatrix; // glm_rotate(), glm_quat_rotate()
TransformMatrix = TransformMatrix * ScaleMatrix; // glm_scale()
As you can see it is multipled as right matrix. For instance what will happen if you call `glm_translate` twice?
.. code-block:: c
:linenos:
glm_translate(transform, translate1); /* transform = transform * translate1 */
glm_translate(transform, translate2); /* transform = transform * translate2 */
glm_rotate(transform, angle, axis) /* transform = transform * rotation */
Now lets try to understand this:
1. You call translate using `translate1` and you expect it will be first transform
because you call it first, do you?
Result will be **`transform = transform * translate1`**
2. Then you call translate using `translate2` and you expect it will be second transform, really?
Result will be **`transform = transform * translate2`**. Now lets expand transform,
it was `transform * translate1` before second call.
Now it is **`transform = transform * translate1 * translate2`**, now do you understand what I say?
3. After last call transform will be:
**`transform = transform * translate1 * translate2 * rotation`**
The order will be; **rotation will be applied first**, then **translate2** then **translate1**
It is all about matrix multiplication order. It is similar to MVP matrix:
`MVP = Projection * View * Model`, model will be applied first, then view then projection.
**Confused?**
As alternative way, you can create transform matrices individually then combine manually,
but don't forget that `glm_translate`, `glm_rotate`, `glm_scale`... are optimized and should be faster (an smaller assembly output) than manual multiplication
.. code-block:: c
:linenos:
mat4 transform1, transform2, transform3, finalTransform;
glm_translate_make(transform1, translate1);
glm_translate_make(transform2, translate2);
glm_rotate_make(transform3, angle, axis);
/* first apply transform1, then transform2, thentransform3 */
glm_mat4_mulN((mat4 *[]){&transform3, &transform2, &transform1}, 3, finalTransform);
/* if you don't want to use mulN, same as above */
glm_mat4_mul(transform3, transform2, finalTransform);
glm_mat4_mul(finalTransform, transform1, finalTransform);
Now transform1 will be applied first, then transform2 then transform3
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -38,6 +130,8 @@ Functions:
#. :c:func:`glm_rotate_make`
#. :c:func:`glm_rotate_ndc`
#. :c:func:`glm_rotate`
#. :c:func:`glm_rotate_at`
#. :c:func:`glm_rotate_atm`
#. :c:func:`glm_decompose_scalev`
#. :c:func:`glm_uniscaled`
#. :c:func:`glm_decompose_rs`
@@ -204,6 +298,29 @@ Functions documentation
| *[in]* **angle** angle (radians)
| *[in]* **axis** axis
.. c:function:: void glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis)
rotate existing transform around given axis by angle at given pivot point (rotation center)
Parameters:
| *[in, out]* **m** affine transfrom
| *[in]* **pivot** pivot, anchor point, rotation center
| *[in]* **angle** angle (radians)
| *[in]* **axis** axis
.. c:function:: void glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis)
| creates NEW rotation matrix by angle and axis at given point
| this creates rotation matrix, it assumes you don't have a matrix
| this should work faster than glm_rotate_at because it reduces one glm_translate.
Parameters:
| *[in, out]* **m** affine transfrom
| *[in]* **pivot** pivot, anchor point, rotation center
| *[in]* **angle** angle (radians)
| *[in]* **axis** axis
.. c:function:: void glm_decompose_scalev(mat4 m, vec3 s)
decompose scale vector

View File

@@ -56,6 +56,9 @@ Functions:
#. :c:func:`glm_quat_for`
#. :c:func:`glm_quat_forp`
#. :c:func:`glm_quat_rotatev`
#. :c:func:`glm_quat_rotate`
#. :c:func:`glm_quat_rotate_at`
#. :c:func:`glm_quat_rotate_atm`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
@@ -354,3 +357,24 @@ Functions documentation
| *[in]* **m** existing transform matrix to rotate
| *[in]* **q** quaternion
| *[out]* **dest** rotated matrix/transform
.. c:function:: void glm_quat_rotate_at(mat4 m, versor q, vec3 pivot)
| rotate existing transform matrix using quaternion at pivot point
Parameters:
| *[in, out]* **m** existing transform matrix to rotate
| *[in]* **q** quaternion
| *[in]* **pivot** pivot
.. c:function:: void glm_quat_rotate(mat4 m, versor q, mat4 dest)
| rotate NEW transform matrix using quaternion at pivot point
| this creates rotation matrix, it assumes you don't have a matrix
| this should work faster than glm_quat_rotate_at because it reduces one glm_translate.
Parameters:
| *[in, out]* **m** existing transform matrix to rotate
| *[in]* **q** quaternion
| *[in]* **pivot** pivot

View File

@@ -25,6 +25,8 @@
CGLM_INLINE void glm_rotate_make(mat4 m, float angle, vec3 axis);
CGLM_INLINE void glm_rotate_ndc(mat4 m, float angle, vec3 axis);
CGLM_INLINE void glm_rotate(mat4 m, float angle, vec3 axis);
CGLM_INLINE void glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_INLINE void glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_INLINE void glm_decompose_scalev(mat4 m, vec3 s);
CGLM_INLINE bool glm_uniscaled(mat4 m);
CGLM_INLINE void glm_decompose_rs(mat4 m, mat4 r, vec3 s);
@@ -521,7 +523,7 @@ glm_decompose_scalev(mat4 m, vec3 s) {
}
/*!
* @brief returns true if matrix is uniform scaled. This is helpful for
* @brief returns true if matrix is uniform scaled. This is helpful for
* creating normal matrix.
*
* @param[in] m m

View File

@@ -757,14 +757,14 @@ glm_quat_rotate(mat4 m, versor q, mat4 dest) {
*/
CGLM_INLINE
void
glm_quat_rotate_at(mat4 model, versor q, vec3 pivot) {
glm_quat_rotate_at(mat4 m, versor q, vec3 pivot) {
vec3 pivotInv;
glm_vec_inv_to(pivot, pivotInv);
glm_translate(model, pivot);
glm_quat_rotate(model, q, model);
glm_translate(model, pivotInv);
glm_translate(m, pivot);
glm_quat_rotate(m, q, m);
glm_translate(m, pivotInv);
}
/*!