Files
pspsdk/src/samples/gu/skinning/skinning.c
Stéphane Blondon 79ac3b7d71 refacto: replace magical values
Hexadecimal constants are replaced by the same value, defined by the FRAME_SIZE macro. These changes are based on the same replacement already done in clut.c.
2025-05-06 13:57:12 +02:00

310 lines
7.1 KiB
C

/*
* PSP Software Development Kit - https://github.com/pspdev
* -----------------------------------------------------------------------
* Licensed under the BSD license, see LICENSE in PSPSDK root for details.
*
* skinning.c - Sample to demonstrate matrix skinning using 8 weights per vertex
*
* Copyright (c) 2005 Jesper Svennevid
* Copyright (c) 2005 Renaldas Zioma <rej@scene.lt>
*/
#include <pspkernel.h>
#include <pspdisplay.h>
#include <pspdebug.h>
#include <psptypes.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <pspge.h>
#include <pspgu.h>
#include <pspgum.h>
PSP_MODULE_INFO("Matrix Skinning Sample", 0, 1, 1);
PSP_MAIN_THREAD_ATTR(THREAD_ATTR_USER);
static unsigned int __attribute__((aligned(16))) list[262144];
#define WEIGHTS_PER_VERTEX 8
typedef struct Vertex
{
float skinWeight[WEIGHTS_PER_VERTEX];
float u,v;
unsigned int color;
float nx,ny,nz;
float x,y,z;
} Vertex;
/* cylinder */
#define CYLINDER_SLICES 48 // numc
#define CYLINDER_ROWS 48 // numt
#define CYLINDER_RADIUS 0.35f
#define CYLINDER_LENGTH 1.25f
Vertex __attribute__((aligned(16))) cylinder_vertices[CYLINDER_SLICES*CYLINDER_ROWS];
unsigned short __attribute__((aligned(16))) cylinder_indices[CYLINDER_SLICES*(CYLINDER_ROWS-1)*6];
#define min( a, b ) ( ((a)<(b))?(a):(b) )
#define max( a, b ) ( ((a)>(b))?(a):(b) )
int SetupCallbacks();
void genSkinnedCylinder( unsigned slices, unsigned rows, float length, float radius, unsigned bones,
Vertex* dstVertices, unsigned short* dstIndices );
#define BUF_WIDTH (512)
#define SCR_WIDTH (480)
#define SCR_HEIGHT (272)
#define PIXEL_SIZE (4) /* change this if you change to another screenmode */
#define FRAME_SIZE (BUF_WIDTH * SCR_HEIGHT * PIXEL_SIZE)
#define HIERARCHY_SIZE (WEIGHTS_PER_VERTEX)
int main(int argc, char* argv[])
{
SetupCallbacks();
// generate geometry
genSkinnedCylinder( CYLINDER_ROWS, CYLINDER_SLICES, CYLINDER_LENGTH, CYLINDER_RADIUS, HIERARCHY_SIZE, cylinder_vertices, cylinder_indices );
// flush cache so that no stray data remains
sceKernelDcacheWritebackAll();
// setup GU
sceGuInit();
sceGuStart(GU_DIRECT,list);
sceGuDrawBuffer(GU_PSM_8888,(void*)0,BUF_WIDTH);
sceGuDispBuffer(SCR_WIDTH,SCR_HEIGHT,(void*)FRAME_SIZE,BUF_WIDTH);
sceGuDepthBuffer((void*)(FRAME_SIZE*2),BUF_WIDTH);
sceGuOffset(2048 - (SCR_WIDTH/2),2048 - (SCR_HEIGHT/2));
sceGuViewport(2048,2048,SCR_WIDTH,SCR_HEIGHT);
sceGuDepthRange(0xc350,0x2710);
sceGuScissor(0,0,SCR_WIDTH,SCR_HEIGHT);
sceGuEnable(GU_SCISSOR_TEST);
sceGuDepthFunc(GU_GEQUAL);
sceGuEnable(GU_DEPTH_TEST);
sceGuFrontFace(GU_CW);
sceGuShadeModel(GU_SMOOTH);
sceGuEnable(GU_CULL_FACE);
sceGuEnable(GU_DITHER);
// setup a light
ScePspFVector3 lightDir = { 0, 0, 1 };
sceGuLight(0,GU_DIRECTIONAL,GU_DIFFUSE,&lightDir);
sceGuLightColor(0,GU_DIFFUSE,0x00ff4040);
sceGuLightAtt(0,1.0f,0.0f,0.0f);
sceGuAmbient(0x00202020);
sceGuEnable(GU_LIGHTING);
sceGuEnable(GU_LIGHT0);
sceGuFinish();
sceGuSync(GU_SYNC_FINISH, GU_SYNC_WHAT_DONE);
sceDisplayWaitVblankStart();
sceGuDisplay(GU_TRUE);
// setup matrices
sceGumMatrixMode(GU_PROJECTION);
sceGumLoadIdentity();
sceGumPerspective(75.0f,16.0f/9.0f,0.5f,1000.0f);
sceGumMatrixMode(GU_VIEW);
{
ScePspFVector3 pos = {0,0,-5.0f};
sceGumLoadIdentity();
sceGumTranslate(&pos);
}
// setup bones hierarchy
ScePspFMatrix4 bones[HIERARCHY_SIZE];
float boneLength = CYLINDER_LENGTH;
// run sample
int val = 0;
int q;
for(;;)
{
sceGuStart(GU_DIRECT,list);
// clear screen
sceGuClearColor(0xff554433);
sceGuClearDepth(0);
sceGuClear(GU_COLOR_BUFFER_BIT|GU_DEPTH_BUFFER_BIT);
// update matrices
for( q = 0; q < HIERARCHY_SIZE; ++q )
{
ScePspFVector3 rot = {0,0,cosf( val * 1.0f * (GU_PI/180.0f))};
gumLoadIdentity(&bones[q]);
gumRotateXYZ(&bones[q],&rot);
if( q > 0 )
{
ScePspFVector3 pos = {boneLength, 0, 0};
gumTranslate(&bones[q], &pos);
gumMultMatrix(&bones[q], &bones[q-1], &bones[q]);
}
// set matrices for skinning
sceGuBoneMatrix( q, &bones[q] );
sceGuMorphWeight( q, 1.0f );
}
sceGumMatrixMode(GU_MODEL);
{
ScePspFVector3 rot = {GU_PI/7.0f, GU_PI/9.0f, 0};
sceGumLoadIdentity();
sceGumRotateXYZ(&rot);
}
for( q = 0 ; q < 4; ++q )
{
ScePspFVector3 rot = {0,0,GU_PI/2.0f};
sceGumRotateXYZ(&rot);
sceGumDrawArray(GU_TRIANGLES,
GU_WEIGHTS( WEIGHTS_PER_VERTEX )|GU_NORMAL_32BITF|GU_TEXTURE_32BITF|GU_COLOR_8888|GU_VERTEX_32BITF|GU_WEIGHT_32BITF|GU_INDEX_16BIT|GU_TRANSFORM_3D,
sizeof(cylinder_indices)/sizeof(unsigned short),cylinder_indices,cylinder_vertices);
}
sceGuFinish();
sceGuSync(GU_SYNC_FINISH, GU_SYNC_WHAT_DONE);
sceDisplayWaitVblankStart();
sceGuSwapBuffers();
val++;
}
sceGuTerm();
sceKernelExitGame();
return 0;
}
/* Exit callback */
int exit_callback(int arg1, int arg2, void *common)
{
sceKernelExitGame();
return 0;
}
/* Callback thread */
int CallbackThread(SceSize args, void *argp)
{
int cbid;
cbid = sceKernelCreateCallback("Exit Callback", exit_callback, NULL);
sceKernelRegisterExitCallback(cbid);
sceKernelSleepThreadCB();
return 0;
}
/* Sets up the callback thread and returns its thread id */
int SetupCallbacks(void)
{
int thid = 0;
thid = sceKernelCreateThread("update_thread", CallbackThread, 0x11, 0xFA0, 0, 0);
if(thid >= 0)
{
sceKernelStartThread(thid, 0, 0);
}
return thid;
}
/* usefull geometry functions */
void genSkinnedCylinder( unsigned slices, unsigned rows, float length, float radius, unsigned bones,
Vertex* dstVertices, unsigned short* dstIndices )
{
unsigned int i,j;
float lengthStep = length / (float)rows;
float boneStep = ((float)bones-1)/((float)rows);
// generate torus (TODO: tri-strips)
for (j = 0; j < slices; ++j)
{
for (i = 0; i < rows; ++i)
{
struct Vertex* curr = &dstVertices[i+j*rows];
float s = i + 0.5f;
float t = j;
float cs,ct,ss,st;
cs = cosf(s * (2*GU_PI)/slices);
ct = cosf(t * (2*GU_PI)/rows);
ss = sinf(s * (2*GU_PI)/slices);
st = sinf(t * (2*GU_PI)/rows);
curr->nx = 0;
curr->ny = ct;
curr->nz = st;
curr->x = lengthStep * (float)i;
curr->y = radius * ct;
curr->z = radius * st;
curr->color = 0xffffff;
int q = 0;
for( ; q < bones; q++ )
{
float b = min( ((float)bones-1), boneStep * (float)i );
float t = b - (float)q;
// calculate cubic blending functions for skinning weights
// each vertex is influenced by 4 bones (matrices) at most
float t2 = t*t;
float t3 = t*t*t;
float f = 0;
if( t >= 0.0f && t < 1.0f ) f = t3/6.0f;
if( t >= 1.0f && t < 2.0f ) f = -0.5f*t3 + 2.0f*t2 - 2.0f*t + 2.0f/3.0f;
if( t >= 2.0f && t < 3.0f ) f = 0.5f*t3 - 4.0f*t2 + 10.0f*t - 22.0f/3.0f;
if( t >= 3.0f && t < 4.0f ) f = -t3/6.0f + 2.0f*t2 - 8.0f*t + 32.0f/3.0f;
curr->skinWeight[q] = f;
}
}
}
for (j = 0; j < slices; ++j)
{
for (i = 0; i < rows-1; ++i)
{
unsigned short* curr = &dstIndices[(i+(j*(rows-1)))*6];
*curr++ = i + j * rows;
*curr++ = (i+1) + j * rows;
*curr++ = i + ((j+1)%slices) * rows;
*curr++ = (i+1) + j * rows;
*curr++ = (i+1) + ((j+1)%slices) * rows;
*curr++ = i + ((j+1)%slices) * rows;
}
}
}