Files
libquantum/qureg.c
2016-10-27 04:26:15 +09:00

678 lines
14 KiB
C

/* qureg.c: Quantum register management
Copyright 2003, 2004, 2006 Bjoern Butscher, Hendrik Weimer
This file is part of libquantum
libquantum is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version.
libquantum is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with libquantum; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "matrix.h"
#include "qureg.h"
#include "config.h"
#include "complex.h"
#include "objcode.h"
#include "error.h"
/* Convert a vector to a quantum register */
quantum_reg
quantum_matrix2qureg(quantum_matrix *m, int width)
{
quantum_reg reg;
int i, j, size=0;
if(m->cols != 1)
quantum_error(QUANTUM_EMCMATRIX);
reg.width = width;
/* Determine the size of the quantum register */
for(i=0; i<m->rows; i++)
{
if(m->t[i])
size++;
}
/* Allocate the required memory */
reg.size = size;
reg.hashw = width + 2;
reg.node = calloc(size, sizeof(quantum_reg_node));
if(!reg.node)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(size * sizeof(quantum_reg_node));
/* Allocate the hash table */
reg.hash = calloc(1 << reg.hashw, sizeof(int));
if(!reg.hash)
quantum_error(QUANTUM_ENOMEM);
quantum_memman((1 << reg.hashw) * sizeof(int));
/* Copy the nonzero amplitudes of the vector into the quantum
register */
for(i=0, j=0; i<m->rows; i++)
{
if(m->t[i])
{
reg.node[j].state = i;
reg.node[j].amplitude = m->t[i];
j++;
}
}
return reg;
}
/* Create a new quantum register from scratch */
quantum_reg
quantum_new_qureg(MAX_UNSIGNED initval, int width)
{
quantum_reg reg;
char *c;
reg.width = width;
reg.size = 1;
reg.hashw = width + 2;
/* Allocate memory for 1 base state */
reg.node = calloc(1, sizeof(quantum_reg_node));
if(!reg.node)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(sizeof(quantum_reg_node));
/* Allocate the hash table */
reg.hash = calloc(1 << reg.hashw, sizeof(int));
if(!reg.hash)
quantum_error(QUANTUM_ENOMEM);
quantum_memman((1 << reg.hashw) * sizeof(int));
/* Initialize the quantum register */
reg.node[0].state = initval;
reg.node[0].amplitude = 1;
/* Initialize the PRNG */
/* srandom(time(0)); */
c = getenv("QUOBFILE");
if(c)
{
quantum_objcode_start();
quantum_objcode_file(c);
atexit((void *) &quantum_objcode_exit);
}
quantum_objcode_put(INIT, initval);
return reg;
}
/* Returns an empty quantum register of size N */
quantum_reg
quantum_new_qureg_size(int n, int width)
{
quantum_reg reg;
reg.width = width;
reg.size = n;
reg.hashw = 0;
reg.hash = 0;
/* Allocate memory for n basis states */
reg.node = calloc(n, sizeof(quantum_reg_node));
if(!reg.node)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(n*sizeof(quantum_reg_node));
return reg;
}
/* Convert a quantum register to a vector */
quantum_matrix
quantum_qureg2matrix(quantum_reg reg)
{
quantum_matrix m;
int i;
m = quantum_new_matrix(1, 1 << reg.width);
for(i=0; i<reg.size; i++)
m.t[reg.node[i].state] = reg.node[i].amplitude;
return m;
}
/* Destroys the entire hash table of a quantum register */
void
quantum_destroy_hash(quantum_reg *reg)
{
free(reg->hash);
quantum_memman(-(1 << reg->hashw) * sizeof(int));
reg->hash = 0;
}
/* Delete a quantum register */
void
quantum_delete_qureg(quantum_reg *reg)
{
if(reg->hashw && reg->hash)
quantum_destroy_hash(reg);
free(reg->node);
quantum_memman(-reg->size * sizeof(quantum_reg_node));
reg->node = 0;
}
/* Delete a quantum register but leave the hash table alive */
void
quantum_delete_qureg_hashpreserve(quantum_reg *reg)
{
free(reg->node);
quantum_memman(-reg->size * sizeof(quantum_reg_node));
reg->node = 0;
}
/* Copy the contents of src to dst */
void
quantum_copy_qureg(quantum_reg *src, quantum_reg *dst)
{
*dst = *src;
/* Allocate memory for basis states */
dst->node = calloc(dst->size, sizeof(quantum_reg_node));
if(!dst->node)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(dst->size*sizeof(quantum_reg_node));
/* Allocate the hash table */
if(dst->hashw)
{
dst->hash = calloc(1 << dst->hashw, sizeof(int));
if(!dst->hash)
quantum_error(QUANTUM_ENOMEM);
quantum_memman((1 << dst->hashw) * sizeof(int));
}
memcpy(dst->node, src->node, src->size*sizeof(quantum_reg_node));
}
/* Print the contents of a quantum register to stdout */
void
quantum_print_qureg(quantum_reg reg)
{
int i,j;
for(i=0; i<reg.size; i++)
{
printf("% f %+fi|%lli> (%e) (|", quantum_real(reg.node[i].amplitude),
quantum_imag(reg.node[i].amplitude), reg.node[i].state,
quantum_prob_inline(reg.node[i].amplitude));
for(j=reg.width-1;j>=0;j--)
{
if(j % 4 == 3)
printf(" ");
printf("%i", ((((MAX_UNSIGNED) 1 << j) & reg.node[i].state) > 0));
}
printf(">)\n");
}
printf("\n");
}
/* Print the output of the modular exponentation algorithm */
void
quantum_print_expn(quantum_reg reg)
{
int i;
for(i=0; i<reg.size; i++)
{
printf("%i: %lli\n", i, reg.node[i].state - i * (1 << (reg.width / 2)));
}
}
/* Add additional space to a qureg. It is initialized to zero and can
be used as scratch space. Note that the space gets added at the LSB */
void
quantum_addscratch(int bits, quantum_reg *reg)
{
int i, oldwidth;
MAX_UNSIGNED l;
oldwidth = reg->width;
reg->width += bits;
for(i=0; i<reg->size; i++)
{
l = reg->node[i].state << bits;
reg->node[i].state = l;
}
}
/* Print the hash table to stdout and test if the hash table is
corrupted */
void
quantum_print_hash(quantum_reg reg)
{
int i;
for(i=0; i < (1 << reg.hashw); i++)
{
if(i)
printf("%i: %i %llu\n", i, reg.hash[i]-1,
reg.node[reg.hash[i]-1].state);
}
}
/* Compute the Kronecker product of two quantum registers */
quantum_reg
quantum_kronecker(quantum_reg *reg1, quantum_reg *reg2)
{
int i,j;
quantum_reg reg;
reg.width = reg1->width+reg2->width;
reg.size = reg1->size*reg2->size;
reg.hashw = reg.width+2;
/* allocate memory for the new basis states */
reg.node = calloc(reg.size, sizeof(quantum_reg_node));
if(!reg.node)
quantum_error(QUANTUM_ENOMEM);
quantum_memman((reg.size)*sizeof(quantum_reg_node));
/* Allocate the hash table */
reg.hash = calloc(1 << reg.hashw, sizeof(int));
if(!reg.hash)
quantum_error(QUANTUM_ENOMEM);
quantum_memman((1 << reg.hashw) * sizeof(int));
for(i=0; i<reg1->size; i++)
for(j=0; j<reg2->size; j++)
{
/* printf("processing |%lli> x |%lli>\n", reg1->node[i].state,
reg2->node[j].state);
printf("%lli\n", (reg1->node[i].state) << reg2->width); */
reg.node[i*reg2->size+j].state = ((reg1->node[i].state) << reg2->width)
| reg2->node[j].state;
reg.node[i*reg2->size+j].amplitude =
reg1->node[i].amplitude * reg2->node[j].amplitude;
}
return reg;
}
/* Reduce the state vector after measurement or partial trace */
quantum_reg
quantum_state_collapse(int pos, int value, quantum_reg reg)
{
int i, j, k;
int size=0;
double d=0;
MAX_UNSIGNED lpat=0, rpat=0, pos2;
quantum_reg out;
pos2 = (MAX_UNSIGNED) 1 << pos;
/* Eradicate all amplitudes of base states which have been ruled out
by the measurement and get the norm of the new register */
for(i=0;i<reg.size;i++)
{
if(((reg.node[i].state & pos2) && value)
|| (!(reg.node[i].state & pos2) && !value))
{
d += quantum_prob_inline(reg.node[i].amplitude);
size++;
}
}
/* Build the new quantum register */
out.width = reg.width-1;
out.size = size;
out.node = calloc(size, sizeof(quantum_reg_node));
if(!out.node)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(size * sizeof(quantum_reg_node));
out.hashw = reg.hashw;
out.hash = reg.hash;
/* Determine the numbers of the new base states and norm the quantum
register */
for(i=0, j=0; i<reg.size; i++)
{
if(((reg.node[i].state & pos2) && value)
|| (!(reg.node[i].state & pos2) && !value))
{
for(k=0, rpat=0; k<pos; k++)
rpat += (MAX_UNSIGNED) 1 << k;
rpat &= reg.node[i].state;
for(k=sizeof(MAX_UNSIGNED)*8-1, lpat=0; k>pos; k--)
lpat += (MAX_UNSIGNED) 1 << k;
lpat &= reg.node[i].state;
out.node[j].state = (lpat >> 1) | rpat;
out.node[j].amplitude = reg.node[i].amplitude * 1 / (float) sqrt(d);
j++;
}
}
return out;
}
/* Compute the dot product of two quantum registers */
COMPLEX_FLOAT
quantum_dot_product(quantum_reg *reg1, quantum_reg *reg2)
{
int i, j;
COMPLEX_FLOAT f = 0;
/* Check whether quantum registers are sorted */
if(reg2->hashw)
quantum_reconstruct_hash(reg2);
for(i=0; i<reg1->size; i++)
{
j = quantum_get_state(reg1->node[i].state, *reg2);
if(j > -1) /* state exists in reg2 */
f += quantum_conj(reg1->node[i].amplitude) * reg2->node[j].amplitude;
}
return f;
}
/* Same as above, but without complex conjugation */
COMPLEX_FLOAT
quantum_dot_product_noconj(quantum_reg *reg1, quantum_reg *reg2)
{
int i, j;
COMPLEX_FLOAT f = 0;
/* Check whether quantum registers are sorted */
if(reg2->hashw)
quantum_reconstruct_hash(reg2);
for(i=0; i<reg1->size; i++)
{
j = quantum_get_state(reg1->node[i].state, *reg2);
if(j > -1) /* state exists in reg2 */
f += reg1->node[i].amplitude * reg2->node[j].amplitude;
}
return f;
}
/* Vector addition of two quantum registers. This is a purely
mathematical operation without any physical meaning, so only use it
if you know what you are doing. */
quantum_reg
quantum_vectoradd(quantum_reg *reg1, quantum_reg *reg2)
{
int i, j, k;
int addsize = 0;
quantum_reg reg;
quantum_copy_qureg(reg1, &reg);
if(reg1->hashw || reg2->hashw)
{
quantum_reconstruct_hash(reg1);
quantum_copy_qureg(reg1, &reg);
/* Calculate the number of additional basis states */
for(i=0; i<reg2->size; i++)
{
if(quantum_get_state(reg2->node[i].state, *reg1) == -1)
addsize++;
}
}
reg.size += addsize;
reg.node = realloc(reg.node, (reg.size)*sizeof(quantum_reg_node));
if(!reg.node)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(addsize*sizeof(quantum_reg_node));
k = reg1->size;
for(i=0; i<reg2->size; i++)
{
j = quantum_get_state(reg2->node[i].state, *reg1);
if(j >= 0)
reg.node[j].amplitude += reg2->node[i].amplitude;
else
{
reg.node[k].state = reg2->node[i].state;
reg.node[k].amplitude = reg2->node[i].amplitude;
k++;
}
}
return reg;
}
/* Same as above, but the result is stored in the first register */
void
quantum_vectoradd_inplace(quantum_reg *reg1, quantum_reg *reg2)
{
int i, j, k;
int addsize = 0;
if(reg1->hashw || reg2->hashw)
{
quantum_reconstruct_hash(reg1);
/* Calculate the number of additional basis states */
for(i=0; i<reg2->size; i++)
{
if(quantum_get_state(reg2->node[i].state, *reg1) == -1)
addsize++;
}
}
/* Allocate memory for basis states */
reg1->node = realloc(reg1->node, (reg1->size+addsize)
* sizeof(quantum_reg_node));
if(!reg1->node)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(addsize*sizeof(quantum_reg_node));
/* Allocate the hash table */
k = reg1->size;
for(i=0; i<reg2->size; i++)
{
j = quantum_get_state(reg2->node[i].state, *reg1);
if(j >= 0)
reg1->node[j].amplitude += reg2->node[i].amplitude;
else
{
reg1->node[k].state = reg2->node[i].state;
reg1->node[k].amplitude = reg2->node[i].amplitude;
k++;
}
}
reg1->size += addsize;
}
/* Matrix-vector multiplication for a quantum register. A is a
function returning a quantum register containing the row given in
the first parameter. An additional parameter (e.g. time) may be
supplied as well. */
quantum_reg
quantum_matrix_qureg(quantum_reg A(MAX_UNSIGNED, double), double t,
quantum_reg *reg)
{
MAX_UNSIGNED i;
quantum_reg reg2;
quantum_reg tmp;
reg2.width = reg->width;
reg2.size = 1 << reg2.width;
reg2.hashw = 0;
reg2.hash = 0;
reg2.node = calloc(reg2.size, sizeof(quantum_reg_node));
if(!reg2.node)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(reg2.size*sizeof(quantum_reg_node));
for(i=0; i<(1<<reg->width); i++)
{
reg2.node[i].state = i;
tmp = A(i, t);
reg2.node[i].amplitude = quantum_dot_product_noconj(&tmp, reg);
quantum_delete_qureg(&tmp);
}
return reg2;
}
/* Scalar multiplication of a quantum register. This is a purely
mathematical operation without any physical meaning, so only use it
if you know what you are doing. */
void
quantum_scalar_qureg(COMPLEX_FLOAT r, quantum_reg *reg)
{
int i;
for(i=0; i<reg->size; i++)
reg->node[i].amplitude *= r;
}
/* Print the time evolution matrix for a series of gates */
void
quantum_print_timeop(int width, void f(quantum_reg *))
{
int i, j;
quantum_reg tmp;
quantum_matrix m;
m = quantum_new_matrix(1 << width, 1 << width);
for(i=0;i<(1 << width); i++)
{
tmp = quantum_new_qureg(i, width);
f(&tmp);
for(j=0; j<tmp.size; j++)
M(m, tmp.node[j].state, i) = tmp.node[j].amplitude;
quantum_delete_qureg(&tmp);
}
quantum_print_matrix(m);
quantum_delete_matrix(&m);
}