mirror of
https://github.com/libquantum/libquantum.git
synced 2025-10-03 08:42:01 +00:00
214 lines
4.7 KiB
C
214 lines
4.7 KiB
C
/* measure.c: Quantum register measurement
|
|
|
|
Copyright 2003, 2004 Bjoern Butscher, Hendrik Weimer
|
|
|
|
This file is part of libquantum
|
|
|
|
libquantum is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published
|
|
by the Free Software Foundation; either version 3 of the License,
|
|
or (at your option) any later version.
|
|
|
|
libquantum is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with libquantum; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
MA 02110-1301, USA
|
|
|
|
*/
|
|
|
|
#include <fcntl.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <unistd.h>
|
|
#include <stdio.h>
|
|
|
|
#include "qureg.h"
|
|
#include "complex.h"
|
|
#include "config.h"
|
|
#include "objcode.h"
|
|
#include "error.h"
|
|
|
|
/* Generate a uniformly distributed random number between 0 and 1 */
|
|
|
|
double
|
|
quantum_frand()
|
|
{
|
|
return (double) rand() / RAND_MAX;
|
|
}
|
|
|
|
/* Measure the contents of a quantum register */
|
|
|
|
MAX_UNSIGNED
|
|
quantum_measure(quantum_reg reg)
|
|
{
|
|
double r;
|
|
int i;
|
|
|
|
if(quantum_objcode_put(MEASURE))
|
|
return 0;
|
|
|
|
/* Get a random number between 0 and 1 */
|
|
|
|
r = quantum_frand();
|
|
|
|
for (i=0; i<reg.size; i++)
|
|
{
|
|
/* If the random number is less than the probability of the
|
|
given base state - r, return the base state as the
|
|
result. Otherwise, continue with the next base state. */
|
|
|
|
r -= quantum_prob_inline(reg.node[i].amplitude);
|
|
if(0 >= r)
|
|
return reg.node[i].state;
|
|
}
|
|
|
|
/* The sum of all probabilities is less than 1. Usually, the cause
|
|
for this is the application of a non-normalized matrix, but there
|
|
is a slim chance that rounding errors may lead to this as
|
|
well. */
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Measure a single bit of a quantum register. The bit measured is
|
|
indicated by its position POS, starting with 0 as the least
|
|
significant bit. The new state of the quantum register depends on
|
|
the result of the measurement. */
|
|
|
|
int
|
|
quantum_bmeasure(int pos, quantum_reg *reg)
|
|
{
|
|
int i;
|
|
int result=0;
|
|
double pa=0, r;
|
|
MAX_UNSIGNED pos2;
|
|
quantum_reg out;
|
|
|
|
if(quantum_objcode_put(BMEASURE, pos))
|
|
return 0;
|
|
|
|
pos2 = (MAX_UNSIGNED) 1 << pos;
|
|
|
|
/* Sum up the probability for 0 being the result */
|
|
|
|
for(i=0; i<reg->size; i++)
|
|
{
|
|
if(!(reg->node[i].state & pos2))
|
|
pa += quantum_prob_inline(reg->node[i].amplitude);
|
|
}
|
|
|
|
/* Compare the probability for 0 with a random number and determine
|
|
the result of the measurement */
|
|
|
|
r = quantum_frand();
|
|
|
|
if (r > pa)
|
|
result = 1;
|
|
|
|
out = quantum_state_collapse(pos, result, *reg);
|
|
|
|
quantum_delete_qureg_hashpreserve(reg);
|
|
*reg = out;
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Measure a single bit, but do not remove it from the quantum
|
|
register */
|
|
|
|
int
|
|
quantum_bmeasure_bitpreserve(int pos, quantum_reg *reg)
|
|
{
|
|
int i, j;
|
|
int size=0, result=0;
|
|
double d=0, pa=0, r;
|
|
MAX_UNSIGNED pos2;
|
|
quantum_reg out;
|
|
|
|
if(quantum_objcode_put(BMEASURE_P, pos))
|
|
return 0;
|
|
|
|
pos2 = (MAX_UNSIGNED) 1 << pos;
|
|
|
|
/* Sum up the probability for 0 being the result */
|
|
|
|
for(i=0; i<reg->size; i++)
|
|
{
|
|
if(!(reg->node[i].state & pos2))
|
|
pa += quantum_prob_inline(reg->node[i].amplitude);
|
|
}
|
|
|
|
/* Compare the probability for 0 with a random number and determine
|
|
the result of the measurement */
|
|
|
|
r = quantum_frand();
|
|
|
|
if (r > pa)
|
|
result = 1;
|
|
|
|
/* Eradicate all amplitudes of base states which have been ruled out
|
|
by the measurement and get the absolute of the new register */
|
|
|
|
for(i=0;i<reg->size;i++)
|
|
{
|
|
if(reg->node[i].state & pos2)
|
|
{
|
|
if(!result)
|
|
reg->node[i].amplitude = 0;
|
|
else
|
|
{
|
|
d += quantum_prob_inline(reg->node[i].amplitude);
|
|
size++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(result)
|
|
reg->node[i].amplitude = 0;
|
|
else
|
|
{
|
|
d += quantum_prob_inline(reg->node[i].amplitude);
|
|
size++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Build the new quantum register */
|
|
|
|
out.size = size;
|
|
out.node = calloc(size, sizeof(quantum_reg_node));
|
|
|
|
if(!out.node)
|
|
quantum_error(QUANTUM_ENOMEM);
|
|
|
|
quantum_memman(size * sizeof(quantum_reg_node));
|
|
out.hashw = reg->hashw;
|
|
out.hash = reg->hash;
|
|
out.width = reg->width;
|
|
|
|
/* Determine the numbers of the new base states and norm the quantum
|
|
register */
|
|
|
|
for(i=0, j=0; i<reg->size; i++)
|
|
{
|
|
if(reg->node[i].amplitude)
|
|
{
|
|
out.node[j].state = reg->node[i].state;
|
|
out.node[j].amplitude = reg->node[i].amplitude * 1 / (float) sqrt(d);
|
|
|
|
j++;
|
|
}
|
|
}
|
|
|
|
quantum_delete_qureg_hashpreserve(reg);
|
|
*reg = out;
|
|
return result;
|
|
}
|