Files
libquantum/density.c
2016-10-27 04:23:16 +09:00

269 lines
5.5 KiB
C

/* density.c: Density operator formalism
Copyright 2004 Bjoern Butscher, Hendrik Weimer
This file is part of libquantum
libquantum is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version.
libquantum is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with libquantum; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA
*/
#include <stdlib.h>
#include <stdio.h>
#include "density.h"
#include "qureg.h"
#include "config.h"
#include "matrix.h"
#include "complex.h"
#include "error.h"
/* Build a new density operator from multiple state vectors */
quantum_density_op
quantum_new_density_op(int num, float *prob, quantum_reg *reg)
{
int i;
quantum_density_op rho;
int *phash;
int hashw;
rho.num = num;
rho.prob = calloc(num, sizeof(float));
if(!rho.prob)
quantum_error(QUANTUM_ENOMEM);
rho.reg = calloc(num, sizeof(quantum_reg));
if(!rho.reg)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(num * (sizeof(float) + sizeof(quantum_reg)));
/* Take the hash table from the first quantum register */
rho.prob[0] = prob[0];
phash = reg[0].hash;
hashw = reg[0].hashw;
rho.reg[0] = reg[0];
/* Destroy the quantum register */
reg[0].size = 0;
reg[0].width = 0;
reg[0].node = 0;
reg[0].hash = 0;
for(i=1; i<num; i++)
{
rho.prob[i] = prob[i];
rho.reg[i] = reg[i];
rho.reg[i].hash = phash;
rho.reg[i].hashw = hashw;
reg[i].size = 0;
reg[i].width = 0;
reg[i].node = 0;
reg[i].hash = 0;
}
return rho;
}
/* Convert a state vector to a density operator */
quantum_density_op
quantum_qureg2density_op(quantum_reg *reg)
{
float f = 1;
return quantum_new_density_op(1, &f, reg);
}
/* Compute the reduced density operator of a system. Bit POS will be
traced out. */
void
quantum_reduced_density_op(int pos, quantum_density_op *rho)
{
int i, j;
double p0=0, ptmp;
MAX_UNSIGNED pos2;
quantum_reg rtmp;
rho->prob = realloc(rho->prob, 2*rho->num*sizeof(float));
if(!rho->prob)
quantum_error(QUANTUM_ENOMEM);
rho->reg = realloc(rho->reg, 2*rho->num*sizeof(quantum_reg));
if(!rho->reg)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(rho->num * (sizeof(float) + sizeof(quantum_reg)));
pos2 = (MAX_UNSIGNED) 1 << pos;
for(i=0; i<rho->num; i++)
{
ptmp = rho->prob[i];
rtmp = rho->reg[i];
p0 = 0;
/* Sum up the probability for 0 being the result for this state
vector */
for(j=0; j<rho->reg[i].size; j++)
{
if(!(rho->reg[i].node[j].state & pos2))
p0 += quantum_prob_inline(rho->reg[i].node[j].amplitude);
}
rho->prob[i] = ptmp * p0;
rho->prob[rho->num + i] = ptmp * (1-p0);
rho->reg[i] = quantum_state_collapse(pos, 0, rtmp);
rho->reg[rho->num + i] = quantum_state_collapse(pos, 1, rtmp);
quantum_delete_qureg_hashpreserve(&rtmp);
}
rho->num *= 2;
}
/* Convert the density operator to a full density matrix */
quantum_matrix
quantum_density_matrix(quantum_density_op *rho)
{
int i, j, k, l1, l2, dim;
quantum_matrix m;
dim = 1 << rho->reg[0].width;
if(dim < 0)
quantum_error(QUANTUM_EMLARGE);
m = quantum_new_matrix(dim, dim);
for(k=0; k<rho->num; k++)
{
quantum_reconstruct_hash(&rho->reg[k]);
for(i=0; i<dim; i++)
{
for(j=0; j<dim; j++)
{
l1 = quantum_get_state(i, rho->reg[k]);
l2 = quantum_get_state(j, rho->reg[k]);
if((l1 > -1) && (l2 > -1))
M(m, i, j) += rho->prob[k] * rho->reg[k].node[l2].amplitude
* quantum_conj(rho->reg[k].node[l1].amplitude);
}
}
}
return m;
}
/* Print the whole density matrix. */
void
quantum_print_density_matrix(quantum_density_op *rho)
{
quantum_matrix m;
m = quantum_density_matrix(rho);
quantum_print_matrix(m);
quantum_delete_matrix(&m);
}
/* Delete a density operator */
void
quantum_delete_density_op(quantum_density_op *rho)
{
int i;
/* Destroy hash table only once */
quantum_destroy_hash(&rho->reg[0]);
for(i=0; i<rho->num; i++)
quantum_delete_qureg_hashpreserve(&rho->reg[i]);
free(rho->prob);
free(rho->reg);
quantum_memman(-rho->num * (sizeof(float) + sizeof(quantum_reg)));
rho->prob = 0;
rho->reg = 0;
}
/* Compute the purity of a density operator */
float
quantum_purity(quantum_density_op *rho)
{
int i, j , k, l;
float f = 0;
COMPLEX_FLOAT g, dp;
/* Diagonal elements */
for(i=0; i<rho->num; i++)
f += rho->prob[i]*rho->prob[i];
for(i=0; i<rho->num; i++)
{
for(j=0; j<i; j++)
{
dp = quantum_dot_product(&rho->reg[i], &rho->reg[j]);
for(k=0; k<rho->reg[i].size; k++)
{
/* quantum_dot_product makes sure that rho->reg[j] has a
correct hash table */
l = quantum_get_state(rho->reg[i].node[k].state, rho->reg[j]);
/* Compute p_i p_j <k|\psi_iX\psi_i|\psi_jX\psi_j|k> */
if(l > -1)
g = rho->prob[i] * rho->prob[j] * dp
* rho->reg[i].node[k].amplitude
* quantum_conj(rho->reg[j].node[l].amplitude);
else
g = 0;
f += 2 * quantum_real(g);
}
}
}
return f;
}