mirror of
https://github.com/libquantum/libquantum.git
synced 2025-10-03 08:42:01 +00:00
183 lines
3.2 KiB
C
183 lines
3.2 KiB
C
/* ising.c: Calculate the ground state of the transverse field Ising model
|
|
|
|
Copyright 2013 Bjoern Butscher, Hendrik Weimer
|
|
|
|
This file is part of libquantum
|
|
|
|
libquantum is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published
|
|
by the Free Software Foundation; either version 3 of the License,
|
|
or (at your option) any later version.
|
|
|
|
libquantum is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with libquantum; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
MA 02110-1301, USA
|
|
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include <quantum.h>
|
|
|
|
quantum_reg *hreg;
|
|
int N;
|
|
double g;
|
|
int *V;
|
|
|
|
quantum_reg H(MAX_UNSIGNED i, double t)
|
|
{
|
|
quantum_reg reg;
|
|
int j;
|
|
|
|
reg = quantum_new_qureg_sparse(N+1, N);
|
|
|
|
/* Transverse field part */
|
|
|
|
for(j=0; j<N; j++)
|
|
{
|
|
reg.state[j] = i^(1 << j);
|
|
reg.amplitude[j] = g;
|
|
}
|
|
|
|
reg.state[N] = i;
|
|
|
|
/* Interaction part */
|
|
|
|
reg.amplitude[N] = V[i];
|
|
|
|
return reg;
|
|
}
|
|
|
|
quantum_reg H2(MAX_UNSIGNED i, double t)
|
|
{
|
|
return hreg[i];
|
|
}
|
|
|
|
int main()
|
|
{
|
|
quantum_reg reg;
|
|
int i, j, k;
|
|
double E0, m, m2;
|
|
|
|
printf("# Ground state properties of the transverse Ising chain\n");
|
|
printf("# g: Transverse field in units of the Ising interaction\n");
|
|
printf("# N: Number of spins\n");
|
|
printf("# E_0: Ground state energy\n");
|
|
printf("# m: Spontaneous magnetization\n");
|
|
printf("# x: Spin susceptibility\n");
|
|
printf("# g\t\tN\tE_0\t\tm\t\tx\n");
|
|
|
|
for(N=8; N<=18; N+=2)
|
|
{
|
|
|
|
/* Precompute interaction energies */
|
|
|
|
V = calloc(1<<N, sizeof(int));
|
|
|
|
assert(V);
|
|
|
|
for(i=0; i<(1<<N); i++)
|
|
{
|
|
k = 0;
|
|
for(j=0; j<N-1; j++)
|
|
{
|
|
if(i & (1<<j))
|
|
{
|
|
if(i & (1<<(j+1)))
|
|
k--;
|
|
else
|
|
k++;
|
|
}
|
|
else
|
|
{
|
|
if(i & (1<<(j+1)))
|
|
k++;
|
|
else
|
|
k--;
|
|
}
|
|
}
|
|
|
|
/* Periodic boundary conditions */
|
|
|
|
if(i & (1<<(N-1)))
|
|
{
|
|
if(i & 1)
|
|
k--;
|
|
else
|
|
k++;
|
|
}
|
|
else
|
|
{
|
|
if(i & 1)
|
|
k++;
|
|
else
|
|
k--;
|
|
}
|
|
|
|
V[i] = k;
|
|
}
|
|
|
|
for(g=0.9; g<1.1; g+=0.01)
|
|
{
|
|
|
|
reg = quantum_new_qureg_size(1<<N, N);
|
|
|
|
for(i=0; i<(1<<N); i++)
|
|
reg.amplitude[i] = rand();
|
|
|
|
hreg = calloc(1<<N, sizeof(quantum_reg));
|
|
|
|
assert(hreg);
|
|
|
|
for(i=0; i<(1<<N); i++)
|
|
hreg[i] = H(i, 0);
|
|
|
|
E0 = quantum_groundstate(®, 1e-12, H2, QUANTUM_SOLVER_LANCZOS, 0);
|
|
|
|
m = 0;
|
|
m2 = 0;
|
|
|
|
for(i=0; i<(1<<N); i++)
|
|
{
|
|
k = 0;
|
|
for(j=0; j<N; j++)
|
|
{
|
|
if(i & (1<<j))
|
|
k--;
|
|
else
|
|
k++;
|
|
}
|
|
m += quantum_prob(reg.amplitude[i])*abs(k);
|
|
m2 += quantum_prob(reg.amplitude[i])*k*k;
|
|
}
|
|
|
|
m /= N;
|
|
m2 /= N;
|
|
|
|
printf("%f\t%i\t%f\t%f\t%f\n", g, N, E0, m, m2-m*m);
|
|
|
|
quantum_delete_qureg(®);
|
|
|
|
for(i=0; i<(1<<N); i++)
|
|
quantum_delete_qureg(&hreg[i]);
|
|
|
|
free(hreg);
|
|
}
|
|
|
|
free(V);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|