Files
libquantum/energy.c
2016-10-27 04:32:19 +09:00

321 lines
7.5 KiB
C

/* energy.c: Compute energetic properties of quantum systems
Copyright 2013 Hendrik Weimer
This file is part of libquantum
libquantum is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version.
libquantum is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with libquantum; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA
*/
#include <float.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "energy.h"
#include "qureg.h"
#include "qtime.h"
#include "complex.h"
extern void dstevd_(char *jobz, int *n, double *d, double *e, double *z,
int *ldz, double *work, int *lwork, int *iwork, int *liwork,
int *info);
/* Modified Lanczos algorithm that iterates over a series of 2x2
matrix diagonalzations [E. Dagotto & A. Moreo, Phys. Rev. D 31, 865
(1985)] */
double
quantum_lanczos_modified(quantum_reg H(MAX_UNSIGNED, double), double epsilon,
quantum_reg *reg)
{
double E0=DBL_MAX, Eold=DBL_MAX, E1, E2, t;
quantum_reg tmp, tmp2;
int i;
COMPLEX_FLOAT h01;
double h00, h11;
for(i=0; i<reg->size; i++)
{
quantum_normalize(reg);
tmp = quantum_matrix_qureg(H, 0, reg, QUANTUM_RK4_NODELETE);
h00 = quantum_real(quantum_dot_product(&tmp, reg));
E0 = h00;
if(fabs(E0-Eold)<epsilon)
return E0;
Eold = E0;
quantum_copy_qureg(reg, &tmp2);
quantum_scalar_qureg(-h00, &tmp2);
quantum_vectoradd_inplace(&tmp, &tmp2);
quantum_normalize(&tmp);
quantum_delete_qureg(&tmp2);
tmp2 = quantum_matrix_qureg(H, 0, &tmp, QUANTUM_RK4_NODELETE);
h11 = quantum_real(quantum_dot_product(&tmp2, &tmp));
h01 = quantum_dot_product(&tmp2, reg);
t = sqrt(h11*h11-2*h00*h11+4*h01*quantum_conj(h01)+h00*h00);
E1 = -(t-h11-h00)/2.;
E2 = (t+h11+h00)/2.;
if(E1<E2)
{
quantum_scalar_qureg(-(t-h11+h00)/2./h01, &tmp);
quantum_vectoradd_inplace(reg, &tmp);
}
else
{
quantum_scalar_qureg((t+h11-h00)/2./h01, &tmp);
quantum_vectoradd_inplace(reg, &tmp);
}
quantum_delete_qureg(&tmp);
quantum_delete_qureg(&tmp2);
}
quantum_error(QUANTUM_ENOCONVERGE);
return nan("0");
}
/* Standard Lanczos algorithm without reorthogonalization (see, e.g.,
[E. Dagotto, Rev. Mod. Phys. 66, 763 (1994)]. */
double
quantum_lanczos(quantum_reg H(MAX_UNSIGNED, double), double epsilon,
quantum_reg *reg)
{
#ifdef HAVE_LIBLAPACK
double E0=DBL_MAX, Eold=DBL_MAX, *a, *b, *d, *e, norm, *eig, *work;
quantum_reg *phi, tmp;
int n, i, j;
char jobz = 'V';
int lwork, *iwork, liwork, info;
phi = calloc(2, sizeof(quantum_reg));
a = calloc(2, sizeof(double));
b = calloc(2, sizeof(double));
work = malloc(sizeof(double));
iwork = malloc(sizeof(int));
eig = malloc(sizeof(double));
d = malloc(sizeof(double));
e = malloc(sizeof(double));
if(!(phi && a && b && work && iwork && eig && d && e))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(2*sizeof(quantum_reg)+4*sizeof(double));
quantum_copy_qureg(reg, &phi[0]);
quantum_normalize(&phi[0]);
tmp = quantum_matrix_qureg(H, 0, &phi[0], QUANTUM_RK4_NODELETE);
a[0] = quantum_dot_product(&tmp, &phi[0]);
quantum_copy_qureg(&phi[0], &phi[1]);
quantum_scalar_qureg(-a[0], &phi[1]);
quantum_vectoradd_inplace(&phi[1], &tmp);
quantum_delete_qureg(&tmp);
tmp = quantum_matrix_qureg(H, 0, &phi[1], QUANTUM_RK4_NODELETE);
norm = quantum_dot_product(&phi[1], &phi[1]);
a[1] = quantum_dot_product(&tmp, &phi[1]) / norm;
b[0] = norm / quantum_dot_product(&phi[0], &phi[0]);
for(n=2; n<reg->size; n++)
{
lwork = n*n+4*n+1;
work = realloc(work, lwork*sizeof(double));
liwork = 5*n+3;
iwork = realloc(iwork, lwork*sizeof(int));
eig = realloc(eig, n*n*sizeof(double));
d = realloc(d, n*sizeof(double));
e = realloc(e, n*sizeof(double));
if(!(work && iwork && eig && d && e))
quantum_error(QUANTUM_ENOMEM);
memcpy(d, a, n*sizeof(double));
for(i=0; i<n; i++)
e[i] = sqrt(b[i]);
dstevd_(&jobz, &n, d, e, eig, &n, work, &lwork, iwork, &liwork, &info);
if(info < 0)
quantum_error(QUANTUM_ELAPACKARG);
else if(info > 0)
quantum_error(QUANTUM_ELAPACKCONV);
E0 = d[0];
if(fabs(E0-Eold) < epsilon)
break;
Eold = E0;
phi = realloc(phi, (n+1)*sizeof(quantum_reg));
a = realloc(a, (n+1)*sizeof(double));
b = realloc(b, (n+1)*sizeof(double));
if(!(phi && a && b))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(sizeof(quantum_reg)+2*sizeof(double));
quantum_copy_qureg(&phi[n-1], &phi[n]);
quantum_scalar_qureg(-a[n-1], &phi[n]);
quantum_vectoradd_inplace(&phi[n], &tmp);
quantum_delete_qureg(&tmp);
quantum_copy_qureg(&phi[n-2], &tmp);
quantum_scalar_qureg(-b[n-2], &tmp);
quantum_vectoradd_inplace(&phi[n], &tmp);
/* printf("%i %f\n", n, quantum_prob(quantum_dot_product(&phi[n],
&phi[0]))); */
quantum_delete_qureg(&tmp);
tmp = quantum_matrix_qureg(H, 0, &phi[n], QUANTUM_RK4_NODELETE);
norm = quantum_dot_product(&phi[n], &phi[n]);
a[n] = quantum_dot_product(&tmp, &phi[n]) / norm;
b[n-1] = norm / quantum_dot_product(&phi[n-1], &phi[n-1]);
}
if(n == reg->size)
{
quantum_error(QUANTUM_ENOCONVERGE);
return nan("0");
}
for(i=0; i<n; i++)
quantum_normalize(&phi[i]);
for(i=0; i<reg->size; i++)
{
reg->amplitude[i] = 0;
for(j=0; j<n; j++)
reg->amplitude[i] += eig[j]*phi[j].amplitude[i];
}
quantum_delete_qureg(&tmp);
for(i=0; i<n; i++)
quantum_delete_qureg(&phi[i]);
free(phi);
free(a);
free(b);
free(d);
free(e);
free(eig);
free(work);
free(iwork);
return E0;
#else
quantum_error(QUANTUM_ENOLAPACK);
#endif /* HAVE_LIBLAPACK */
}
/* Imaginary time evolution algorithm */
double
quantum_imaginary_time(quantum_reg H(MAX_UNSIGNED, double), double epsilon,
double dt, quantum_reg *reg)
{
double E0=DBL_MAX, Eold=DBL_MAX;
quantum_reg reg2;
int i;
for(i=0; i<reg->size; i++)
{
quantum_rk4(reg, 0, dt, H, QUANTUM_RK4_IMAGINARY | QUANTUM_RK4_NODELETE);
reg2 = quantum_matrix_qureg(H, 0, reg, QUANTUM_RK4_NODELETE);
E0 = quantum_real(quantum_dot_product(&reg2, reg));
quantum_delete_qureg(&reg2);
if(fabs(Eold-E0)<epsilon)
break;
Eold = E0;
}
if(i == reg->size)
{
quantum_error(QUANTUM_ENOCONVERGE);
return nan("0");
}
else
return E0;
}
/* Wrapper around the various solver functions */
double
quantum_groundstate(quantum_reg *reg, double epsilon,
quantum_reg H(MAX_UNSIGNED, double), int solver,
double stepsize)
{
switch(solver)
{
case QUANTUM_SOLVER_LANCZOS:
return quantum_lanczos(H, epsilon, reg);
case QUANTUM_SOLVER_LANCZOS_MODIFIED:
return quantum_lanczos_modified(H, epsilon, reg);
case QUANTUM_SOLVER_IMAGINARY_TIME:
return quantum_imaginary_time(H, epsilon, stepsize, reg);
default:
quantum_error(QUANTUM_ENOSOLVER);
return nan("0");
}
}