updated libquantum 0.2.3 source files

This commit is contained in:
libquantum
2016-10-27 04:18:31 +09:00
parent 8f37efac24
commit 42c207188a
17 changed files with 11664 additions and 3901 deletions

178
gates.c
View File

@@ -1,6 +1,6 @@
/* gates.c: Basic gates for quantum register manipulation
Copyright 2003 Bjoern Butscher, Hendrik Weimer
Copyright 2003, 2004 Bjoern Butscher, Hendrik Weimer
This file is part of libquantum
@@ -283,8 +283,7 @@ quantum_swaptheleads_omuln_controlled(int control, int width, quantum_reg *reg)
}
}
/* Apply the 2x2 matrix M to the target bit. M should be unitary and
having a determinant of 1. */
/* Apply the 2x2 matrix M to the target bit. M should be unitary. */
void
quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
@@ -454,6 +453,179 @@ quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
quantum_decohere(reg);
}
/* Apply the 4x4 matrix M to the target bit, controlled by CONTROL. M
should be unitary. */
/* WARNING: THIS FUNCTION IS INCOMPLETE AND DOES NOT WORK AS INTENDED! */
void
quantum_gate2(int control, int target, quantum_matrix m, quantum_reg *reg)
{
int i, j, k, iset;
int addsize=0, decsize=0;
COMPLEX_FLOAT t, tnot=0;
float limit;
char *done;
if((m.cols != 4) || (m.rows != 4))
{
printf("Matrix is not a 4x4 matrix!\n");
exit(1);
}
/* Build hash table */
for(i=0; i<(1 << reg->hashw); i++)
reg->hash[i] = 0;
for(i=0; i<reg->size; i++)
quantum_add_hash(reg->node[i].state, i, reg);
/* calculate the number of basis states to be added */
for(i=0; i<reg->size; i++)
{
j = quantum_get_state(reg->node[i].state ^ ((MAX_UNSIGNED) 1 << target),
*reg);
if(j == -1)
{
if((m.t[1] != 0) && (reg->node[i].state
& ((MAX_UNSIGNED) 1 << target)))
addsize++;
if((m.t[2] != 0) && !(reg->node[i].state
& ((MAX_UNSIGNED) 1 << target)))
addsize++;
}
}
/* allocate memory for the new basis states */
reg->node = realloc(reg->node,
(reg->size + addsize) * sizeof(quantum_reg_node));
if(!reg->node)
{
printf("Not enough memory for %i-sized qubit!\n", reg->size + addsize);
exit(1);
}
quantum_memman(addsize*sizeof(quantum_reg_node));
for(i=0; i<addsize; i++)
{
reg->node[i+reg->size].state = 0;
reg->node[i+reg->size].amplitude = 0;
}
done = calloc(reg->size + addsize, sizeof(char));
if(!done)
{
printf("Not enough memory for %i bytes array!\n",
(reg->size + addsize) * sizeof(char));
exit(1);
}
quantum_memman(reg->size + addsize * sizeof(char));
k = reg->size;
limit = (1.0 / ((MAX_UNSIGNED) 1 << reg->width)) / 1000000;
/* perform the actual matrix multiplication */
for(i=0; i<reg->size; i++)
{
if(!done[i])
{
/* determine if the target of the basis state is set */
iset = reg->node[i].state & ((MAX_UNSIGNED) 1 << target);
tnot = 0;
j = quantum_get_state(reg->node[i].state
^ ((MAX_UNSIGNED) 1<<target), *reg);
t = reg->node[i].amplitude;
if(j >= 0)
tnot = reg->node[j].amplitude;
if(iset)
reg->node[i].amplitude = m.t[2] * tnot + m.t[3] * t;
else
reg->node[i].amplitude = m.t[0] * t + m.t[1] * tnot;
if(j >= 0)
{
if(iset)
reg->node[j].amplitude = m.t[0] * tnot + m.t[1] * t;
else
reg->node[j].amplitude = m.t[2] * t + m.t[3] * tnot;
}
else /* new basis state will be created */
{
if((m.t[1] == 0) && (iset))
break;
if((m.t[2] == 0) && !(iset))
break;
reg->node[k].state = reg->node[i].state
^ ((MAX_UNSIGNED) 1 << target);
if(iset)
reg->node[k].amplitude = m.t[1] * t;
else
reg->node[k].amplitude = m.t[2] * t;
k++;
}
if(j >= 0)
done[j] = 1;
}
}
reg->size += addsize;
free(done);
quantum_memman(-reg->size * sizeof(char));
/* remove basis states with extremely small amplitude */
for(i=0, j=0; i<reg->size; i++)
{
if(quantum_prob_inline(reg->node[i].amplitude) < limit)
{
j++;
decsize++;
}
else if(j)
{
reg->node[i-j].state = reg->node[i].state;
reg->node[i-j].amplitude = reg->node[i].amplitude;
}
}
if(decsize)
{
reg->size -= decsize;
reg->node = realloc(reg->node, reg->size * sizeof(quantum_reg_node));
if(!reg->node)
{
printf("Not enough memory for %i-sized qubit!\n",
reg->size + addsize);
exit(1);
}
quantum_memman(-decsize * sizeof(quantum_reg_node));
}
quantum_decohere(reg);
}
/* Apply a hadamard gate */
void