mirror of
https://github.com/libquantum/libquantum.git
synced 2025-10-03 08:42:01 +00:00
updated libquantum 1.1.1 source files
This commit is contained in:
9
CHANGES
9
CHANGES
@@ -1,3 +1,12 @@
|
||||
libquantum 1.1.1:
|
||||
- Added support for ground state calculations
|
||||
- Added example program simulating the tranverse Ising chain
|
||||
- Optimized memory layout for quantum registers (thanks to
|
||||
Acumem, breaks backward compatiblity)
|
||||
- Added OpenMP support
|
||||
- Improved C99 compatibility for complex numbers
|
||||
- Improved support of double precision arithmetic
|
||||
|
||||
libquantum 1.1.0:
|
||||
- Added exact diagonlization based on LAPACK
|
||||
- Added flag in quantum_rk4 to preserve qureg (breaks backward
|
||||
|
17
Makefile.in
17
Makefile.in
@@ -48,8 +48,8 @@ LIBTOOL=@LIBTOOL@
|
||||
|
||||
# Flags passed to C compiler
|
||||
|
||||
CFLAGS=@CFLAGS@
|
||||
LDFLAGS=-rpath $(LIBDIR) -version-info 7:0:0
|
||||
CFLAGS=@CFLAGS@ @OPENMP_CFLAGS@
|
||||
LDFLAGS=-rpath $(LIBDIR) -version-info 8:0:0
|
||||
|
||||
# Dependencies
|
||||
|
||||
@@ -57,11 +57,11 @@ all: libquantum.la
|
||||
|
||||
libquantum.la: complex.lo measure.lo matrix.lo gates.lo qft.lo classic.lo \
|
||||
qureg.lo decoherence.lo oaddn.lo omuln.lo expn.lo qec.lo version.lo \
|
||||
objcode.lo density.lo error.lo qtime.lo lapack.lo Makefile
|
||||
objcode.lo density.lo error.lo qtime.lo lapack.lo energy.lo Makefile
|
||||
$(LIBTOOL) --mode=link $(CC) $(LDFLAGS) -o libquantum.la complex.lo \
|
||||
measure.lo matrix.lo gates.lo oaddn.lo omuln.lo expn.lo qft.lo \
|
||||
classic.lo qureg.lo decoherence.lo qec.lo version.lo objcode.lo \
|
||||
density.lo error.lo qtime.lo lapack.lo @LIBS@
|
||||
density.lo error.lo qtime.lo lapack.lo energy.lo @LIBS@
|
||||
|
||||
complex.lo: complex.c complex.h config.h Makefile
|
||||
$(LIBTOOL) --mode=compile $(CC) $(CFLAGS) -c complex.c
|
||||
@@ -123,6 +123,9 @@ qtime.lo: qtime.c qtime.h qureg.h Makefile
|
||||
lapack.lo: lapack.c lapack.h matrix.h qureg.h config.h error.h Makefile
|
||||
$(LIBTOOL) --mode=compile $(CC) $(CFLAGS) -c lapack.c
|
||||
|
||||
energy.lo: energy.c energy.h qureg.h config.h error.h Makefile
|
||||
$(LIBTOOL) --mode=compile $(CC) $(CFLAGS) -c energy.c
|
||||
|
||||
# Autoconf stuff
|
||||
|
||||
Makefile: config.status Makefile.in aclocal.m4 config.h.in types.h.in \
|
||||
@@ -140,7 +143,7 @@ config.status: configure
|
||||
|
||||
# Build demos of Shor's and Grover's algorithms
|
||||
|
||||
demos: shor grover
|
||||
demos: shor grover ising
|
||||
|
||||
shor: libquantum.la shor.c Makefile
|
||||
$(LIBTOOL) --mode=link $(CC) $(CFLAGS) -o shor shor.c -I./ -lquantum \
|
||||
@@ -150,6 +153,10 @@ grover: libquantum.la grover.c Makefile
|
||||
$(LIBTOOL) --mode=link $(CC) $(CFLAGS) -o grover grover.c -I./ \
|
||||
-lquantum -static -lm
|
||||
|
||||
ising: libquantum.la ising.c Makefile
|
||||
$(LIBTOOL) --mode=link $(CC) $(CFLAGS) -o ising ising.c -I./ -lquantum \
|
||||
-static -lm
|
||||
|
||||
# Quantum object code tools
|
||||
|
||||
quobtools: quobprint quobdump
|
||||
|
11
complex.c
11
complex.c
@@ -22,26 +22,27 @@
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <complex.h>
|
||||
|
||||
#include "complex.h"
|
||||
#include "config.h"
|
||||
|
||||
/* Return the complex conjugate of a complex number */
|
||||
|
||||
COMPLEX_FLOAT
|
||||
/*COMPLEX_FLOAT
|
||||
quantum_conj(COMPLEX_FLOAT a)
|
||||
{
|
||||
float r, i;
|
||||
REAL_FLOAT r, i;
|
||||
|
||||
r = quantum_real(a);
|
||||
i = quantum_imag(a);
|
||||
|
||||
return r - IMAGINARY * i;
|
||||
}
|
||||
}*/
|
||||
|
||||
/* Calculate the square of a complex number (i.e. the probability) */
|
||||
|
||||
float
|
||||
double
|
||||
quantum_prob(COMPLEX_FLOAT a)
|
||||
{
|
||||
return quantum_prob_inline(a);
|
||||
@@ -49,7 +50,7 @@ quantum_prob(COMPLEX_FLOAT a)
|
||||
|
||||
/* Calculate e^(i * phi) */
|
||||
|
||||
COMPLEX_FLOAT quantum_cexp(float phi)
|
||||
COMPLEX_FLOAT quantum_cexp(REAL_FLOAT phi)
|
||||
{
|
||||
return cos(phi) + IMAGINARY * sin(phi);
|
||||
}
|
||||
|
31
complex.h
31
complex.h
@@ -25,37 +25,22 @@
|
||||
|
||||
#define __COMPLEX_H
|
||||
|
||||
#include <complex.h>
|
||||
#include "config.h"
|
||||
|
||||
extern COMPLEX_FLOAT quantum_conj(COMPLEX_FLOAT a);
|
||||
#define quantum_conj(z) (conj(z))
|
||||
#define quantum_real(z) (creal(z))
|
||||
#define quantum_imag(z) (cimag(z))
|
||||
|
||||
extern float quantum_prob (COMPLEX_FLOAT a);
|
||||
extern COMPLEX_FLOAT quantum_cexp(float phi);
|
||||
|
||||
/* Return the real part of a complex number */
|
||||
|
||||
static inline float
|
||||
quantum_real(COMPLEX_FLOAT a)
|
||||
{
|
||||
float *p = (float *) &a;
|
||||
return p[0];
|
||||
}
|
||||
|
||||
/* Return the imaginary part of a complex number */
|
||||
|
||||
static inline float
|
||||
quantum_imag(COMPLEX_FLOAT a)
|
||||
{
|
||||
float *p = (float *) &a;
|
||||
return p[1];
|
||||
}
|
||||
extern double quantum_prob (COMPLEX_FLOAT a);
|
||||
extern COMPLEX_FLOAT quantum_cexp(REAL_FLOAT phi);
|
||||
|
||||
/* Calculate the square of a complex number (i.e. the probability) */
|
||||
|
||||
static inline float
|
||||
static inline double
|
||||
quantum_prob_inline(COMPLEX_FLOAT a)
|
||||
{
|
||||
float r, i;
|
||||
REAL_FLOAT r, i;
|
||||
|
||||
r = quantum_real(a);
|
||||
i = quantum_imag(a);
|
||||
|
@@ -94,4 +94,7 @@
|
||||
/* Define to 1 if you have LAPACK */
|
||||
#undef HAVE_LIBLAPACK
|
||||
|
||||
/* Define to 1 if using double precision */
|
||||
#undef USE_DOUBLE
|
||||
|
||||
#include "types.h"
|
||||
|
34
configure.in
34
configure.in
@@ -1,7 +1,7 @@
|
||||
# configure.in: Process this file with autoconf to produce a configure
|
||||
# script.
|
||||
#
|
||||
# Copyright 2003-2005 Bjoern Butscher, Hendrik Weimer
|
||||
# Copyright 2003-2013 Bjoern Butscher, Hendrik Weimer
|
||||
#
|
||||
# This file is part of libquantum
|
||||
#
|
||||
@@ -20,7 +20,7 @@
|
||||
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
||||
# MA 02110-1301, USA
|
||||
|
||||
AC_INIT([libquantum], [1.1.0], [libquantum@libquantum.de])
|
||||
AC_INIT([libquantum], [1.1.1], [libquantum@libquantum.de])
|
||||
AC_CONFIG_SRCDIR([classic.c])
|
||||
AC_CONFIG_HEADER([config.h])
|
||||
|
||||
@@ -35,7 +35,7 @@ AC_PROG_LIBTOOL
|
||||
# Checks for libraries.
|
||||
AC_CHECK_LIB([m], [sqrt])
|
||||
AC_ARG_WITH(lapack,
|
||||
[ --with-lapack LAPACK support [default=yes]],
|
||||
[ --with-lapack LAPACK support [[default=yes]]],
|
||||
[if test $withval = "yes"
|
||||
then
|
||||
AC_CHECK_LIB([lapack], [cheev_])
|
||||
@@ -75,11 +75,16 @@ fi
|
||||
# Check for complex number type
|
||||
AC_ARG_WITH([complex-type],
|
||||
[ --with-complex-type=ARG type for complex numbers],
|
||||
[CF_TYPE=$withval
|
||||
], [CF_TYPE="none"
|
||||
[CF_TYPE=$withval], [CF_TYPE="none"
|
||||
AC_CHECK_TYPE([float complex], [AC_DEFINE([COMPLEX_FLOAT],
|
||||
[float complex])
|
||||
CF_TYPE="float complex"])])
|
||||
if test "$CF_TYPE" = "none"
|
||||
then
|
||||
AC_CHECK_TYPE([float _Complex], [AC_DEFINE([COMPLEX_FLOAT],
|
||||
[float _Complex])
|
||||
CF_TYPE="float _Complex"])])
|
||||
[float _Complex])
|
||||
CF_TYPE="float _Complex"])
|
||||
fi
|
||||
if test "$CF_TYPE" = "none"
|
||||
then
|
||||
AC_CHECK_TYPE([__complex__ float], [AC_DEFINE([COMPLEX_FLOAT],
|
||||
@@ -91,6 +96,14 @@ then
|
||||
AC_MSG_ERROR([No complex number type!])
|
||||
fi
|
||||
|
||||
AC_MSG_CHECKING([for corresponding real data type])
|
||||
AC_RUN_IFELSE(
|
||||
[AC_LANG_PROGRAM([], [return sizeof($CF_TYPE) == 2*sizeof(double)])],
|
||||
[RF_TYPE="float"],
|
||||
[RF_TYPE="double"; AC_DEFINE(USE_DOUBLE)], [float])
|
||||
AC_MSG_RESULT($RF_TYPE)
|
||||
|
||||
|
||||
# Check for the imaginary unit
|
||||
AC_MSG_CHECKING([for the imaginary unit])
|
||||
AC_ARG_WITH([imaginary],
|
||||
@@ -108,9 +121,13 @@ then
|
||||
fi
|
||||
AC_MSG_RESULT($I)
|
||||
|
||||
# Check for OpenMP support
|
||||
AC_OPENMP
|
||||
|
||||
# Substitute fields in quantum.h.in and types.h
|
||||
AC_SUBST(MU_TYPE)
|
||||
AC_SUBST(CF_TYPE)
|
||||
AC_SUBST(RF_TYPE)
|
||||
AC_SUBST(I)
|
||||
|
||||
# Profiling check
|
||||
@@ -120,9 +137,6 @@ AC_ARG_ENABLE(profiling,
|
||||
then CFLAGS="$CFLAGS -pg -fprofile-arcs -ftest-coverage"
|
||||
fi], [])
|
||||
|
||||
# Disable LAPACK check
|
||||
|
||||
|
||||
# Enable -Wall for gcc
|
||||
if test $CC = "gcc"
|
||||
then
|
||||
|
@@ -114,13 +114,13 @@ quantum_decohere(quantum_reg *reg)
|
||||
|
||||
for(j=0; j<reg->width; j++)
|
||||
{
|
||||
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << j))
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << j))
|
||||
angle += nrands[j];
|
||||
else
|
||||
angle -= nrands[j];
|
||||
}
|
||||
|
||||
reg->node[i].amplitude *= quantum_cexp(angle);
|
||||
reg->amplitude[i] *= quantum_cexp(angle);
|
||||
|
||||
}
|
||||
free(nrands);
|
||||
|
20
density.c
20
density.c
@@ -66,7 +66,8 @@ quantum_new_density_op(int num, float *prob, quantum_reg *reg)
|
||||
|
||||
reg[0].size = 0;
|
||||
reg[0].width = 0;
|
||||
reg[0].node = 0;
|
||||
reg[0].state = 0;
|
||||
reg[0].amplitude = 0;
|
||||
reg[0].hash = 0;
|
||||
|
||||
for(i=1; i<num; i++)
|
||||
@@ -78,7 +79,8 @@ quantum_new_density_op(int num, float *prob, quantum_reg *reg)
|
||||
|
||||
reg[i].size = 0;
|
||||
reg[i].width = 0;
|
||||
reg[i].node = 0;
|
||||
reg[i].state = 0;
|
||||
reg[i].amplitude = 0;
|
||||
reg[i].hash = 0;
|
||||
}
|
||||
|
||||
@@ -133,8 +135,8 @@ quantum_reduced_density_op(int pos, quantum_density_op *rho)
|
||||
|
||||
for(j=0; j<rho->reg[i].size; j++)
|
||||
{
|
||||
if(!(rho->reg[i].node[j].state & pos2))
|
||||
p0 += quantum_prob_inline(rho->reg[i].node[j].amplitude);
|
||||
if(!(rho->reg[i].state[j] & pos2))
|
||||
p0 += quantum_prob_inline(rho->reg[i].amplitude[j]);
|
||||
}
|
||||
|
||||
rho->prob[i] = ptmp * p0;
|
||||
@@ -176,8 +178,8 @@ quantum_density_matrix(quantum_density_op *rho)
|
||||
l1 = quantum_get_state(i, rho->reg[k]);
|
||||
l2 = quantum_get_state(j, rho->reg[k]);
|
||||
if((l1 > -1) && (l2 > -1))
|
||||
M(m, i, j) += rho->prob[k] * rho->reg[k].node[l2].amplitude
|
||||
* quantum_conj(rho->reg[k].node[l1].amplitude);
|
||||
M(m, i, j) += rho->prob[k] * rho->reg[k].amplitude[l2]
|
||||
* quantum_conj(rho->reg[k].amplitude[l1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -246,14 +248,14 @@ quantum_purity(quantum_density_op *rho)
|
||||
/* quantum_dot_product makes sure that rho->reg[j] has a
|
||||
correct hash table */
|
||||
|
||||
l = quantum_get_state(rho->reg[i].node[k].state, rho->reg[j]);
|
||||
l = quantum_get_state(rho->reg[i].state[k], rho->reg[j]);
|
||||
|
||||
/* Compute p_i p_j <k|\psi_iX\psi_i|\psi_jX\psi_j|k> */
|
||||
|
||||
if(l > -1)
|
||||
g = rho->prob[i] * rho->prob[j] * dp
|
||||
* rho->reg[i].node[k].amplitude
|
||||
* quantum_conj(rho->reg[j].node[l].amplitude);
|
||||
* rho->reg[i].amplitude[k]
|
||||
* quantum_conj(rho->reg[j].amplitude[l]);
|
||||
else
|
||||
g = 0;
|
||||
|
||||
|
320
energy.c
Normal file
320
energy.c
Normal file
@@ -0,0 +1,320 @@
|
||||
/* energy.c: Compute energetic properties of quantum systems
|
||||
|
||||
Copyright 2013 Hendrik Weimer
|
||||
|
||||
This file is part of libquantum
|
||||
|
||||
libquantum is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published
|
||||
by the Free Software Foundation; either version 3 of the License,
|
||||
or (at your option) any later version.
|
||||
|
||||
libquantum is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with libquantum; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
||||
MA 02110-1301, USA
|
||||
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "energy.h"
|
||||
#include "qureg.h"
|
||||
#include "qtime.h"
|
||||
#include "complex.h"
|
||||
|
||||
extern void dstevd_(char *jobz, int *n, double *d, double *e, double *z,
|
||||
int *ldz, double *work, int *lwork, int *iwork, int *liwork,
|
||||
int *info);
|
||||
|
||||
|
||||
/* Modified Lanczos algorithm that iterates over a series of 2x2
|
||||
matrix diagonalzations [E. Dagotto & A. Moreo, Phys. Rev. D 31, 865
|
||||
(1985)] */
|
||||
|
||||
double
|
||||
quantum_lanczos_modified(quantum_reg H(MAX_UNSIGNED, double), double epsilon,
|
||||
quantum_reg *reg)
|
||||
{
|
||||
double E0=DBL_MAX, Eold=DBL_MAX, E1, E2, t;
|
||||
quantum_reg tmp, tmp2;
|
||||
int i;
|
||||
COMPLEX_FLOAT h01;
|
||||
double h00, h11;
|
||||
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
quantum_normalize(reg);
|
||||
|
||||
tmp = quantum_matrix_qureg(H, 0, reg, QUANTUM_RK4_NODELETE);
|
||||
|
||||
h00 = quantum_real(quantum_dot_product(&tmp, reg));
|
||||
|
||||
E0 = h00;
|
||||
|
||||
if(fabs(E0-Eold)<epsilon)
|
||||
return E0;
|
||||
|
||||
Eold = E0;
|
||||
|
||||
quantum_copy_qureg(reg, &tmp2);
|
||||
quantum_scalar_qureg(-h00, &tmp2);
|
||||
|
||||
quantum_vectoradd_inplace(&tmp, &tmp2);
|
||||
|
||||
quantum_normalize(&tmp);
|
||||
|
||||
quantum_delete_qureg(&tmp2);
|
||||
|
||||
tmp2 = quantum_matrix_qureg(H, 0, &tmp, QUANTUM_RK4_NODELETE);
|
||||
|
||||
h11 = quantum_real(quantum_dot_product(&tmp2, &tmp));
|
||||
h01 = quantum_dot_product(&tmp2, reg);
|
||||
|
||||
t = sqrt(h11*h11-2*h00*h11+4*h01*quantum_conj(h01)+h00*h00);
|
||||
|
||||
E1 = -(t-h11-h00)/2.;
|
||||
E2 = (t+h11+h00)/2.;
|
||||
|
||||
if(E1<E2)
|
||||
{
|
||||
quantum_scalar_qureg(-(t-h11+h00)/2./h01, &tmp);
|
||||
quantum_vectoradd_inplace(reg, &tmp);
|
||||
}
|
||||
else
|
||||
{
|
||||
quantum_scalar_qureg((t+h11-h00)/2./h01, &tmp);
|
||||
quantum_vectoradd_inplace(reg, &tmp);
|
||||
}
|
||||
|
||||
quantum_delete_qureg(&tmp);
|
||||
quantum_delete_qureg(&tmp2);
|
||||
|
||||
|
||||
}
|
||||
|
||||
quantum_error(QUANTUM_ENOCONVERGE);
|
||||
return nan("0");
|
||||
|
||||
}
|
||||
|
||||
/* Standard Lanczos algorithm without reorthogonalization (see, e.g.,
|
||||
[E. Dagotto, Rev. Mod. Phys. 66, 763 (1994)]. */
|
||||
|
||||
double
|
||||
quantum_lanczos(quantum_reg H(MAX_UNSIGNED, double), double epsilon,
|
||||
quantum_reg *reg)
|
||||
{
|
||||
#ifdef HAVE_LIBLAPACK
|
||||
double E0=DBL_MAX, Eold=DBL_MAX, *a, *b, *d, *e, norm, *eig, *work;
|
||||
quantum_reg *phi, tmp;
|
||||
int n, i, j;
|
||||
char jobz = 'V';
|
||||
int lwork, *iwork, liwork, info;
|
||||
|
||||
phi = calloc(2, sizeof(quantum_reg));
|
||||
a = calloc(2, sizeof(double));
|
||||
b = calloc(2, sizeof(double));
|
||||
|
||||
work = malloc(sizeof(double));
|
||||
iwork = malloc(sizeof(int));
|
||||
|
||||
eig = malloc(sizeof(double));
|
||||
d = malloc(sizeof(double));
|
||||
e = malloc(sizeof(double));
|
||||
|
||||
if(!(phi && a && b && work && iwork && eig && d && e))
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(2*sizeof(quantum_reg)+4*sizeof(double));
|
||||
|
||||
quantum_copy_qureg(reg, &phi[0]);
|
||||
quantum_normalize(&phi[0]);
|
||||
|
||||
tmp = quantum_matrix_qureg(H, 0, &phi[0], QUANTUM_RK4_NODELETE);
|
||||
|
||||
a[0] = quantum_dot_product(&tmp, &phi[0]);
|
||||
|
||||
quantum_copy_qureg(&phi[0], &phi[1]);
|
||||
quantum_scalar_qureg(-a[0], &phi[1]);
|
||||
quantum_vectoradd_inplace(&phi[1], &tmp);
|
||||
|
||||
quantum_delete_qureg(&tmp);
|
||||
|
||||
tmp = quantum_matrix_qureg(H, 0, &phi[1], QUANTUM_RK4_NODELETE);
|
||||
|
||||
norm = quantum_dot_product(&phi[1], &phi[1]);
|
||||
|
||||
a[1] = quantum_dot_product(&tmp, &phi[1]) / norm;
|
||||
b[0] = norm / quantum_dot_product(&phi[0], &phi[0]);
|
||||
|
||||
for(n=2; n<reg->size; n++)
|
||||
{
|
||||
lwork = n*n+4*n+1;
|
||||
work = realloc(work, lwork*sizeof(double));
|
||||
|
||||
liwork = 5*n+3;
|
||||
iwork = realloc(iwork, lwork*sizeof(int));
|
||||
|
||||
eig = realloc(eig, n*n*sizeof(double));
|
||||
d = realloc(d, n*sizeof(double));
|
||||
e = realloc(e, n*sizeof(double));
|
||||
|
||||
if(!(work && iwork && eig && d && e))
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
memcpy(d, a, n*sizeof(double));
|
||||
|
||||
for(i=0; i<n; i++)
|
||||
e[i] = sqrt(b[i]);
|
||||
|
||||
dstevd_(&jobz, &n, d, e, eig, &n, work, &lwork, iwork, &liwork, &info);
|
||||
|
||||
if(info < 0)
|
||||
quantum_error(QUANTUM_ELAPACKARG);
|
||||
|
||||
else if(info > 0)
|
||||
quantum_error(QUANTUM_ELAPACKCONV);
|
||||
|
||||
E0 = d[0];
|
||||
|
||||
if(fabs(E0-Eold) < epsilon)
|
||||
break;
|
||||
|
||||
Eold = E0;
|
||||
|
||||
phi = realloc(phi, (n+1)*sizeof(quantum_reg));
|
||||
a = realloc(a, (n+1)*sizeof(double));
|
||||
b = realloc(b, (n+1)*sizeof(double));
|
||||
|
||||
if(!(phi && a && b))
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(sizeof(quantum_reg)+2*sizeof(double));
|
||||
|
||||
quantum_copy_qureg(&phi[n-1], &phi[n]);
|
||||
quantum_scalar_qureg(-a[n-1], &phi[n]);
|
||||
quantum_vectoradd_inplace(&phi[n], &tmp);
|
||||
|
||||
quantum_delete_qureg(&tmp);
|
||||
|
||||
quantum_copy_qureg(&phi[n-2], &tmp);
|
||||
quantum_scalar_qureg(-b[n-2], &tmp);
|
||||
quantum_vectoradd_inplace(&phi[n], &tmp);
|
||||
|
||||
/* printf("%i %f\n", n, quantum_prob(quantum_dot_product(&phi[n],
|
||||
&phi[0]))); */
|
||||
|
||||
quantum_delete_qureg(&tmp);
|
||||
|
||||
tmp = quantum_matrix_qureg(H, 0, &phi[n], QUANTUM_RK4_NODELETE);
|
||||
|
||||
norm = quantum_dot_product(&phi[n], &phi[n]);
|
||||
|
||||
a[n] = quantum_dot_product(&tmp, &phi[n]) / norm;
|
||||
b[n-1] = norm / quantum_dot_product(&phi[n-1], &phi[n-1]);
|
||||
|
||||
}
|
||||
|
||||
if(n == reg->size)
|
||||
{
|
||||
quantum_error(QUANTUM_ENOCONVERGE);
|
||||
return nan("0");
|
||||
}
|
||||
|
||||
for(i=0; i<n; i++)
|
||||
quantum_normalize(&phi[i]);
|
||||
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
reg->amplitude[i] = 0;
|
||||
for(j=0; j<n; j++)
|
||||
reg->amplitude[i] += eig[j]*phi[j].amplitude[i];
|
||||
}
|
||||
|
||||
quantum_delete_qureg(&tmp);
|
||||
|
||||
for(i=0; i<n; i++)
|
||||
quantum_delete_qureg(&phi[i]);
|
||||
|
||||
free(phi);
|
||||
free(a);
|
||||
free(b);
|
||||
free(d);
|
||||
free(e);
|
||||
free(eig);
|
||||
free(work);
|
||||
free(iwork);
|
||||
|
||||
return E0;
|
||||
|
||||
|
||||
#else
|
||||
quantum_error(QUANTUM_ENOLAPACK);
|
||||
|
||||
#endif /* HAVE_LIBLAPACK */
|
||||
|
||||
}
|
||||
|
||||
/* Imaginary time evolution algorithm */
|
||||
|
||||
double
|
||||
quantum_imaginary_time(quantum_reg H(MAX_UNSIGNED, double), double epsilon,
|
||||
double dt, quantum_reg *reg)
|
||||
{
|
||||
double E0=DBL_MAX, Eold=DBL_MAX;
|
||||
quantum_reg reg2;
|
||||
int i;
|
||||
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
quantum_rk4(reg, 0, dt, H, QUANTUM_RK4_IMAGINARY | QUANTUM_RK4_NODELETE);
|
||||
reg2 = quantum_matrix_qureg(H, 0, reg, QUANTUM_RK4_NODELETE);
|
||||
|
||||
E0 = quantum_real(quantum_dot_product(®2, reg));
|
||||
|
||||
quantum_delete_qureg(®2);
|
||||
|
||||
if(fabs(Eold-E0)<epsilon)
|
||||
break;
|
||||
Eold = E0;
|
||||
}
|
||||
|
||||
if(i == reg->size)
|
||||
{
|
||||
quantum_error(QUANTUM_ENOCONVERGE);
|
||||
return nan("0");
|
||||
}
|
||||
|
||||
else
|
||||
return E0;
|
||||
}
|
||||
|
||||
/* Wrapper around the various solver functions */
|
||||
|
||||
double
|
||||
quantum_groundstate(quantum_reg *reg, double epsilon,
|
||||
quantum_reg H(MAX_UNSIGNED, double), int solver,
|
||||
double stepsize)
|
||||
{
|
||||
switch(solver)
|
||||
{
|
||||
case QUANTUM_SOLVER_LANCZOS:
|
||||
return quantum_lanczos(H, epsilon, reg);
|
||||
case QUANTUM_SOLVER_LANCZOS_MODIFIED:
|
||||
return quantum_lanczos_modified(H, epsilon, reg);
|
||||
case QUANTUM_SOLVER_IMAGINARY_TIME:
|
||||
return quantum_imaginary_time(H, epsilon, stepsize, reg);
|
||||
default:
|
||||
quantum_error(QUANTUM_ENOSOLVER);
|
||||
return nan("0");
|
||||
}
|
||||
}
|
41
energy.h
Normal file
41
energy.h
Normal file
@@ -0,0 +1,41 @@
|
||||
/* energy.h: Declarations for energy.c
|
||||
|
||||
Copyright 2013 Hendrik Weimer
|
||||
|
||||
This file is part of libquantum
|
||||
|
||||
libquantum is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published
|
||||
by the Free Software Foundation; either version 3 of the License,
|
||||
or (at your option) any later version.
|
||||
|
||||
libquantum is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with libquantum; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
||||
MA 02110-1301, USA
|
||||
|
||||
*/
|
||||
|
||||
#ifndef __ENERGY_H
|
||||
|
||||
#define __ENERGY_H
|
||||
|
||||
#include "config.h"
|
||||
#include "qureg.h"
|
||||
|
||||
enum {
|
||||
QUANTUM_SOLVER_LANCZOS,
|
||||
QUANTUM_SOLVER_LANCZOS_MODIFIED,
|
||||
QUANTUM_SOLVER_IMAGINARY_TIME
|
||||
};
|
||||
|
||||
extern double quantum_groundstate(quantum_reg *reg, double epsilon,
|
||||
quantum_reg H(MAX_UNSIGNED, double),
|
||||
int solver, double stepsize);
|
||||
|
||||
#endif
|
8
error.c
8
error.c
@@ -54,12 +54,16 @@ quantum_strerr(int errno)
|
||||
return "wrong matrix size";
|
||||
case QUANTUM_EHASHFULL:
|
||||
return "hash table full";
|
||||
case QUANTUM_EHERMITIAN:
|
||||
return "matrix not Hermitian";
|
||||
case QUANTUM_ENOCONVERGE:
|
||||
return "method failed to converge";
|
||||
case QUANTUM_ENOLAPACK:
|
||||
return "LAPACK support not compiled in";
|
||||
case QUANTUM_ELAPACKARG:
|
||||
return "wrong arguments supplied to LAPACK";
|
||||
case QUANTUM_ELAPACKCHEEV:
|
||||
return "LAPACK's CHEEV failed to converge";
|
||||
case QUANTUM_ELAPACKCONV:
|
||||
return "LAPACK failed to converge";
|
||||
case QUANTUM_EMCMATRIX:
|
||||
return "single-column matrix expected";
|
||||
case QUANTUM_EOPCODE:
|
||||
|
5
error.h
5
error.h
@@ -32,9 +32,12 @@ enum {
|
||||
QUANTUM_EMLARGE = 3,
|
||||
QUANTUM_EMSIZE = 4,
|
||||
QUANTUM_EHASHFULL = 5,
|
||||
QUANTUM_EHERMITIAN = 6,
|
||||
QUANTUM_ENOCONVERGE = 7,
|
||||
QUANTUM_ENOSOLVER = 8,
|
||||
QUANTUM_ENOLAPACK = 32768, /* LAPACK errors start at 32768 */
|
||||
QUANTUM_ELAPACKARG = 32769,
|
||||
QUANTUM_ELAPACKCHEEV = 32770,
|
||||
QUANTUM_ELAPACKCONV = 32770,
|
||||
QUANTUM_EMCMATRIX = 65536, /* internal errors start at 65536 */
|
||||
QUANTUM_EOPCODE = 65537
|
||||
};
|
||||
|
247
gates.c
247
gates.c
@@ -52,12 +52,15 @@ quantum_cnot(int control, int target, quantum_reg *reg)
|
||||
if(quantum_objcode_put(CNOT, control, target))
|
||||
return;
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
/* Flip the target bit of a basis state if the control bit is set */
|
||||
|
||||
if((reg->node[i].state & ((MAX_UNSIGNED) 1 << control)))
|
||||
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
|
||||
if((reg->state[i] & ((MAX_UNSIGNED) 1 << control)))
|
||||
reg->state[i] ^= ((MAX_UNSIGNED) 1 << target);
|
||||
}
|
||||
quantum_decohere(reg);
|
||||
}
|
||||
@@ -80,16 +83,19 @@ quantum_toffoli(int control1, int control2, int target, quantum_reg *reg)
|
||||
if(quantum_objcode_put(TOFFOLI, control1, control2, target))
|
||||
return;
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
/* Flip the target bit of a basis state if both control bits are
|
||||
set */
|
||||
|
||||
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control1))
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control1))
|
||||
{
|
||||
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control2))
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control2))
|
||||
{
|
||||
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
|
||||
reg->state[i] ^= ((MAX_UNSIGNED) 1 << target);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -126,13 +132,16 @@ quantum_unbounded_toffoli(int controlling, quantum_reg *reg, ...)
|
||||
|
||||
va_end(bits);
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for private (j)
|
||||
#endif
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
for(j=0; (j < controlling) &&
|
||||
(reg->node[i].state & (MAX_UNSIGNED) 1 << controls[j]); j++);
|
||||
(reg->state[i] & (MAX_UNSIGNED) 1 << controls[j]); j++);
|
||||
|
||||
if(j == controlling) /* all control bits are set */
|
||||
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
|
||||
reg->state[i] ^= ((MAX_UNSIGNED) 1 << target);
|
||||
}
|
||||
|
||||
free(controls);
|
||||
@@ -160,11 +169,14 @@ quantum_sigma_x(int target, quantum_reg *reg)
|
||||
if(quantum_objcode_put(SIGMA_X, target))
|
||||
return;
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
/* Flip the target bit of each basis state */
|
||||
|
||||
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
|
||||
reg->state[i] ^= ((MAX_UNSIGNED) 1 << target);
|
||||
}
|
||||
quantum_decohere(reg);
|
||||
}
|
||||
@@ -180,17 +192,20 @@ quantum_sigma_y(int target, quantum_reg *reg)
|
||||
if(quantum_objcode_put(SIGMA_Y, target))
|
||||
return;
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(i=0; i<reg->size;i++)
|
||||
{
|
||||
/* Flip the target bit of each basis state and multiply with
|
||||
+/- i */
|
||||
|
||||
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
|
||||
reg->state[i] ^= ((MAX_UNSIGNED) 1 << target);
|
||||
|
||||
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
|
||||
reg->node[i].amplitude *= IMAGINARY;
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
|
||||
reg->amplitude[i] *= IMAGINARY;
|
||||
else
|
||||
reg->node[i].amplitude *= -IMAGINARY;
|
||||
reg->amplitude[i] *= -IMAGINARY;
|
||||
}
|
||||
|
||||
quantum_decohere(reg);
|
||||
@@ -206,12 +221,15 @@ quantum_sigma_z(int target, quantum_reg *reg)
|
||||
if(quantum_objcode_put(SIGMA_Z, target))
|
||||
return;
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
/* Multiply with -1 if the target bit is set */
|
||||
|
||||
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
|
||||
reg->node[i].amplitude *= -1;
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
|
||||
reg->amplitude[i] *= -1;
|
||||
}
|
||||
quantum_decohere(reg);
|
||||
}
|
||||
@@ -248,21 +266,21 @@ quantum_swaptheleads(int width, quantum_reg *reg)
|
||||
|
||||
/* calculate left bit pattern */
|
||||
|
||||
pat1 = reg->node[i].state % ((MAX_UNSIGNED) 1 << width);
|
||||
pat1 = reg->state[i] % ((MAX_UNSIGNED) 1 << width);
|
||||
|
||||
/*calculate right but pattern */
|
||||
|
||||
pat2 = 0;
|
||||
|
||||
for(j=0; j<width; j++)
|
||||
pat2 += reg->node[i].state & ((MAX_UNSIGNED) 1 << (width + j));
|
||||
pat2 += reg->state[i] & ((MAX_UNSIGNED) 1 << (width + j));
|
||||
|
||||
/* construct the new basis state */
|
||||
|
||||
l = reg->node[i].state - (pat1 + pat2);
|
||||
l = reg->state[i] - (pat1 + pat2);
|
||||
l += (pat1 << width);
|
||||
l += (pat2 >> width);
|
||||
reg->node[i].state = l;
|
||||
reg->state[i] = l;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -307,26 +325,29 @@ quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
|
||||
{
|
||||
/* determine whether XORed basis state already exists */
|
||||
|
||||
if(quantum_get_state(reg->node[i].state
|
||||
if(quantum_get_state(reg->state[i]
|
||||
^ ((MAX_UNSIGNED) 1 << target), *reg) == -1)
|
||||
addsize++;
|
||||
}
|
||||
|
||||
/* allocate memory for the new basis states */
|
||||
|
||||
reg->node = realloc(reg->node,
|
||||
(reg->size + addsize) * sizeof(quantum_reg_node));
|
||||
reg->state = realloc(reg->state,
|
||||
(reg->size + addsize) * sizeof(MAX_UNSIGNED));
|
||||
reg->amplitude = realloc(reg->amplitude,
|
||||
(reg->size + addsize) * sizeof(COMPLEX_FLOAT));
|
||||
|
||||
if(!reg->node)
|
||||
if(reg->size && !(reg->state && reg->amplitude))
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(addsize*sizeof(quantum_reg_node));
|
||||
quantum_memman(addsize*(sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
|
||||
|
||||
for(i=0; i<addsize; i++)
|
||||
{
|
||||
reg->node[i+reg->size].state = 0;
|
||||
reg->node[i+reg->size].amplitude = 0;
|
||||
reg->state[i+reg->size] = 0;
|
||||
reg->amplitude[i+reg->size] = 0;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
done = calloc(reg->size + addsize, sizeof(char));
|
||||
@@ -348,29 +369,29 @@ quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
|
||||
{
|
||||
/* determine if the target of the basis state is set */
|
||||
|
||||
iset = reg->node[i].state & ((MAX_UNSIGNED) 1 << target);
|
||||
iset = reg->state[i] & ((MAX_UNSIGNED) 1 << target);
|
||||
|
||||
tnot = 0;
|
||||
j = quantum_get_state(reg->node[i].state
|
||||
j = quantum_get_state(reg->state[i]
|
||||
^ ((MAX_UNSIGNED) 1<<target), *reg);
|
||||
t = reg->node[i].amplitude;
|
||||
|
||||
if(j >= 0)
|
||||
tnot = reg->node[j].amplitude;
|
||||
tnot = reg->amplitude[j];
|
||||
|
||||
t = reg->amplitude[i];
|
||||
|
||||
if(iset)
|
||||
reg->node[i].amplitude = m.t[2] * tnot + m.t[3] * t;
|
||||
reg->amplitude[i] = m.t[2] * tnot + m.t[3] * t;
|
||||
|
||||
else
|
||||
reg->node[i].amplitude = m.t[0] * t + m.t[1] * tnot;
|
||||
reg->amplitude[i] = m.t[0] * t + m.t[1] * tnot;
|
||||
|
||||
if(j >= 0)
|
||||
{
|
||||
if(iset)
|
||||
reg->node[j].amplitude = m.t[0] * tnot + m.t[1] * t;
|
||||
reg->amplitude[j] = m.t[0] * tnot + m.t[1] * t;
|
||||
|
||||
else
|
||||
reg->node[j].amplitude = m.t[2] * t + m.t[3] * tnot;
|
||||
reg->amplitude[j] = m.t[2] * t + m.t[3] * tnot;
|
||||
}
|
||||
|
||||
|
||||
@@ -382,14 +403,14 @@ quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
|
||||
if((m.t[2] == 0) && !(iset))
|
||||
break;
|
||||
|
||||
reg->node[k].state = reg->node[i].state
|
||||
reg->state[k] = reg->state[i]
|
||||
^ ((MAX_UNSIGNED) 1 << target);
|
||||
|
||||
if(iset)
|
||||
reg->node[k].amplitude = m.t[1] * t;
|
||||
reg->amplitude[k] = m.t[1] * t;
|
||||
|
||||
else
|
||||
reg->node[k].amplitude = m.t[2] * t;
|
||||
reg->amplitude[k] = m.t[2] * t;
|
||||
|
||||
k++;
|
||||
}
|
||||
@@ -411,7 +432,7 @@ quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
|
||||
{
|
||||
for(i=0, j=0; i<reg->size; i++)
|
||||
{
|
||||
if(quantum_prob_inline(reg->node[i].amplitude) < limit)
|
||||
if(quantum_prob_inline(reg->amplitude[i]) < limit)
|
||||
{
|
||||
j++;
|
||||
decsize++;
|
||||
@@ -419,23 +440,33 @@ quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
|
||||
|
||||
else if(j)
|
||||
{
|
||||
reg->node[i-j].state = reg->node[i].state;
|
||||
reg->node[i-j].amplitude = reg->node[i].amplitude;
|
||||
reg->state[i-j] = reg->state[i];
|
||||
reg->amplitude[i-j] = reg->amplitude[i];
|
||||
}
|
||||
}
|
||||
|
||||
if(decsize)
|
||||
{
|
||||
reg->size -= decsize;
|
||||
reg->node = realloc(reg->node, reg->size * sizeof(quantum_reg_node));
|
||||
reg->amplitude = realloc(reg->amplitude,
|
||||
reg->size * sizeof(COMPLEX_FLOAT));
|
||||
reg->state = realloc(reg->state,
|
||||
reg->size * sizeof(MAX_UNSIGNED));
|
||||
|
||||
if(!reg->node)
|
||||
|
||||
if(reg->size && !(reg->state && reg->amplitude))
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(-decsize * sizeof(quantum_reg_node));
|
||||
quantum_memman(-decsize * (sizeof(MAX_UNSIGNED)
|
||||
+ sizeof(COMPLEX_FLOAT)));
|
||||
}
|
||||
}
|
||||
|
||||
if(reg->size > (1 << (reg->hashw-1)))
|
||||
fprintf(stderr, "Warning: inefficient hash table (size %i vs hash %i)\n",
|
||||
reg->size, 1<<reg->hashw);
|
||||
|
||||
|
||||
quantum_decohere(reg);
|
||||
}
|
||||
|
||||
@@ -464,34 +495,36 @@ quantum_gate2(int target1, int target2, quantum_matrix m, quantum_reg *reg)
|
||||
reg->hash[i] = 0;
|
||||
|
||||
for(i=0; i<reg->size; i++)
|
||||
quantum_add_hash(reg->node[i].state, i, reg);
|
||||
quantum_add_hash(reg->state[i], i, reg);
|
||||
|
||||
/* calculate the number of basis states to be added */
|
||||
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
if(quantum_get_state(reg->node[i].state ^ ((MAX_UNSIGNED) 1 << target1),
|
||||
if(quantum_get_state(reg->state[i] ^ ((MAX_UNSIGNED) 1 << target1),
|
||||
*reg) == -1)
|
||||
addsize++;
|
||||
if(quantum_get_state(reg->node[i].state ^ ((MAX_UNSIGNED) 1 << target2),
|
||||
if(quantum_get_state(reg->state[i] ^ ((MAX_UNSIGNED) 1 << target2),
|
||||
*reg) == -1)
|
||||
addsize++;
|
||||
}
|
||||
|
||||
/* allocate memory for the new basis states */
|
||||
|
||||
reg->node = realloc(reg->node,
|
||||
(reg->size + addsize) * sizeof(quantum_reg_node));
|
||||
reg->state = realloc(reg->state,
|
||||
(reg->size + addsize) * sizeof(MAX_UNSIGNED));
|
||||
reg->amplitude = realloc(reg->amplitude,
|
||||
(reg->size + addsize) * sizeof(COMPLEX_FLOAT));
|
||||
|
||||
if(!reg->node)
|
||||
quantum_error(QUANTUM_EMSIZE);
|
||||
if(reg->size && !(reg->state && reg->amplitude))
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(addsize*sizeof(quantum_reg_node));
|
||||
quantum_memman(addsize*(sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
|
||||
|
||||
for(i=0; i<addsize; i++)
|
||||
{
|
||||
reg->node[i+reg->size].state = 0;
|
||||
reg->node[i+reg->size].amplitude = 0;
|
||||
reg->state[i+reg->size] = 0;
|
||||
reg->amplitude[i+reg->size] = 0;
|
||||
}
|
||||
|
||||
done = calloc(reg->size + addsize, sizeof(char));
|
||||
@@ -514,15 +547,15 @@ quantum_gate2(int target1, int target2, quantum_matrix m, quantum_reg *reg)
|
||||
{
|
||||
if(!done[i])
|
||||
{
|
||||
j = quantum_bitmask(reg->node[i].state, 2, bits);
|
||||
j = quantum_bitmask(reg->state[i], 2, bits);
|
||||
base[j] = i;
|
||||
base[j ^ 1] = quantum_get_state(reg->node[i].state
|
||||
base[j ^ 1] = quantum_get_state(reg->state[i]
|
||||
^ ((MAX_UNSIGNED) 1 << target2),
|
||||
*reg);
|
||||
base[j ^ 2] = quantum_get_state(reg->node[i].state
|
||||
base[j ^ 2] = quantum_get_state(reg->state[i]
|
||||
^ ((MAX_UNSIGNED) 1 << target1),
|
||||
*reg);
|
||||
base[j ^ 3] = quantum_get_state(reg->node[i].state
|
||||
base[j ^ 3] = quantum_get_state(reg->state[i]
|
||||
^ ((MAX_UNSIGNED) 1 << target1)
|
||||
^ ((MAX_UNSIGNED) 1 << target2),
|
||||
*reg);
|
||||
@@ -532,17 +565,17 @@ quantum_gate2(int target1, int target2, quantum_matrix m, quantum_reg *reg)
|
||||
if(base[j] == -1)
|
||||
{
|
||||
base[j] = l;
|
||||
// reg->node[l].state = reg->node[i].state
|
||||
// reg->node[l].state = reg->state[i]
|
||||
l++;
|
||||
}
|
||||
psi_sub[j] = reg->node[base[j]].amplitude;
|
||||
psi_sub[j] = reg->amplitude[base[j]];
|
||||
}
|
||||
|
||||
for(j=0; j<4; j++)
|
||||
{
|
||||
reg->node[base[j]].amplitude = 0;
|
||||
reg->amplitude[base[j]] = 0;
|
||||
for(k=0; k<4; k++)
|
||||
reg->node[base[j]].amplitude += M(m, k, j) * psi_sub[k];
|
||||
reg->amplitude[base[j]] += M(m, k, j) * psi_sub[k];
|
||||
|
||||
done[base[j]] = 1;
|
||||
}
|
||||
@@ -560,7 +593,7 @@ quantum_gate2(int target1, int target2, quantum_matrix m, quantum_reg *reg)
|
||||
|
||||
for(i=0, j=0; i<reg->size; i++)
|
||||
{
|
||||
if(quantum_prob_inline(reg->node[i].amplitude) < limit)
|
||||
if(quantum_prob_inline(reg->amplitude[i]) < limit)
|
||||
{
|
||||
j++;
|
||||
decsize++;
|
||||
@@ -568,20 +601,26 @@ quantum_gate2(int target1, int target2, quantum_matrix m, quantum_reg *reg)
|
||||
|
||||
else if(j)
|
||||
{
|
||||
reg->node[i-j].state = reg->node[i].state;
|
||||
reg->node[i-j].amplitude = reg->node[i].amplitude;
|
||||
reg->state[i-j] = reg->state[i];
|
||||
reg->amplitude[i-j] = reg->amplitude[i];
|
||||
}
|
||||
}
|
||||
|
||||
if(decsize)
|
||||
{
|
||||
reg->size -= decsize;
|
||||
reg->node = realloc(reg->node, reg->size * sizeof(quantum_reg_node));
|
||||
reg->amplitude = realloc(reg->amplitude,
|
||||
reg->size * sizeof(COMPLEX_FLOAT));
|
||||
reg->state = realloc(reg->state,
|
||||
reg->size * sizeof(MAX_UNSIGNED));
|
||||
|
||||
if(!reg->node)
|
||||
|
||||
if(reg->size && !(reg->state && reg->amplitude))
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(-decsize * sizeof(quantum_reg_node));
|
||||
quantum_memman(-decsize * (sizeof(MAX_UNSIGNED)
|
||||
+ sizeof(COMPLEX_FLOAT)));
|
||||
|
||||
}
|
||||
|
||||
quantum_decohere(reg);
|
||||
@@ -677,10 +716,10 @@ quantum_r_z(int target, float gamma, quantum_reg *reg)
|
||||
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
|
||||
reg->node[i].amplitude *= z;
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
|
||||
reg->amplitude[i] *= z;
|
||||
else
|
||||
reg->node[i].amplitude /= z;
|
||||
reg->amplitude[i] /= z;
|
||||
}
|
||||
|
||||
quantum_decohere(reg);
|
||||
@@ -699,9 +738,12 @@ quantum_phase_scale(int target, float gamma, quantum_reg *reg)
|
||||
|
||||
z = quantum_cexp(gamma);
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
reg->node[i].amplitude *= z;
|
||||
reg->amplitude[i] *= z;
|
||||
}
|
||||
|
||||
quantum_decohere(reg);
|
||||
@@ -721,10 +763,13 @@ quantum_phase_kick(int target, float gamma, quantum_reg *reg)
|
||||
|
||||
z = quantum_cexp(gamma);
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
|
||||
reg->node[i].amplitude *= z;
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
|
||||
reg->amplitude[i] *= z;
|
||||
}
|
||||
|
||||
quantum_decohere(reg);
|
||||
@@ -743,12 +788,15 @@ quantum_cond_phase(int control, int target, quantum_reg *reg)
|
||||
|
||||
z = quantum_cexp(pi / ((MAX_UNSIGNED) 1 << (control - target)));
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control))
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control))
|
||||
{
|
||||
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
|
||||
reg->node[i].amplitude *= z;
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
|
||||
reg->amplitude[i] *= z;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -764,12 +812,15 @@ quantum_cond_phase_inv(int control, int target, quantum_reg *reg)
|
||||
|
||||
z = quantum_cexp(-pi / ((MAX_UNSIGNED) 1 << (control - target)));
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control))
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control))
|
||||
{
|
||||
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
|
||||
reg->node[i].amplitude *= z;
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
|
||||
reg->amplitude[i] *= z;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -788,17 +839,49 @@ quantum_cond_phase_kick(int control, int target, float gamma, quantum_reg *reg)
|
||||
|
||||
z = quantum_cexp(gamma);
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control))
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control))
|
||||
{
|
||||
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
|
||||
reg->node[i].amplitude *= z;
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
|
||||
reg->amplitude[i] *= z;
|
||||
}
|
||||
}
|
||||
quantum_decohere(reg);
|
||||
}
|
||||
|
||||
void
|
||||
quantum_cond_phase_shift(int control, int target, float gamma, quantum_reg *reg)
|
||||
{
|
||||
int i;
|
||||
COMPLEX_FLOAT z;
|
||||
|
||||
if(quantum_objcode_put(COND_PHASE, control, target, (double) gamma))
|
||||
return;
|
||||
|
||||
z = quantum_cexp(gamma/2);
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control))
|
||||
{
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
|
||||
reg->amplitude[i] *= z;
|
||||
else
|
||||
reg->amplitude[i] /= z;
|
||||
}
|
||||
}
|
||||
quantum_decohere(reg);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/* Increase the gate counter by INC steps or reset it if INC < 0. The
|
||||
current value of the counter is returned. */
|
||||
|
5
grover.c
5
grover.c
@@ -145,6 +145,7 @@ int main(int argc, char **argv)
|
||||
width = quantum_getwidth(N+1);
|
||||
|
||||
reg = quantum_new_qureg(0, width);
|
||||
// reg.width--;
|
||||
|
||||
quantum_sigma_x(reg.width, ®);
|
||||
|
||||
@@ -169,9 +170,9 @@ int main(int argc, char **argv)
|
||||
|
||||
for(i=0; i<reg.size; i++)
|
||||
{
|
||||
if(reg.node[i].state == N)
|
||||
if(reg.state[i] == N)
|
||||
printf("\nFound %i with a probability of %f\n\n", N,
|
||||
quantum_prob(reg.node[i].amplitude));
|
||||
quantum_prob(reg.amplitude[i]));
|
||||
}
|
||||
|
||||
quantum_delete_qureg(®);
|
||||
|
182
ising.c
Normal file
182
ising.c
Normal file
@@ -0,0 +1,182 @@
|
||||
/* ising.c: Calculate the ground state of the transverse field Ising model
|
||||
|
||||
Copyright 2013 Bjoern Butscher, Hendrik Weimer
|
||||
|
||||
This file is part of libquantum
|
||||
|
||||
libquantum is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published
|
||||
by the Free Software Foundation; either version 3 of the License,
|
||||
or (at your option) any later version.
|
||||
|
||||
libquantum is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with libquantum; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
||||
MA 02110-1301, USA
|
||||
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
|
||||
#include <quantum.h>
|
||||
|
||||
quantum_reg *hreg;
|
||||
int N;
|
||||
double g;
|
||||
int *V;
|
||||
|
||||
quantum_reg H(MAX_UNSIGNED i, double t)
|
||||
{
|
||||
quantum_reg reg;
|
||||
int j;
|
||||
|
||||
reg = quantum_new_qureg_sparse(N+1, N);
|
||||
|
||||
/* Transverse field part */
|
||||
|
||||
for(j=0; j<N; j++)
|
||||
{
|
||||
reg.state[j] = i^(1 << j);
|
||||
reg.amplitude[j] = g;
|
||||
}
|
||||
|
||||
reg.state[N] = i;
|
||||
|
||||
/* Interaction part */
|
||||
|
||||
reg.amplitude[N] = V[i];
|
||||
|
||||
return reg;
|
||||
}
|
||||
|
||||
quantum_reg H2(MAX_UNSIGNED i, double t)
|
||||
{
|
||||
return hreg[i];
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
quantum_reg reg;
|
||||
int i, j, k;
|
||||
double E0, m, m2;
|
||||
|
||||
printf("# Ground state properties of the transverse Ising chain\n");
|
||||
printf("# g: Transverse field in units of the Ising interaction\n");
|
||||
printf("# N: Number of spins\n");
|
||||
printf("# E_0: Ground state energy\n");
|
||||
printf("# m: Spontaneous magnetization\n");
|
||||
printf("# x: Spin susceptibility\n");
|
||||
printf("# g\t\tN\tE_0\t\tm\t\tx\n");
|
||||
|
||||
for(N=8; N<=18; N+=2)
|
||||
{
|
||||
|
||||
/* Precompute interaction energies */
|
||||
|
||||
V = calloc(1<<N, sizeof(int));
|
||||
|
||||
assert(V);
|
||||
|
||||
for(i=0; i<(1<<N); i++)
|
||||
{
|
||||
k = 0;
|
||||
for(j=0; j<N-1; j++)
|
||||
{
|
||||
if(i & (1<<j))
|
||||
{
|
||||
if(i & (1<<(j+1)))
|
||||
k--;
|
||||
else
|
||||
k++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if(i & (1<<(j+1)))
|
||||
k++;
|
||||
else
|
||||
k--;
|
||||
}
|
||||
}
|
||||
|
||||
/* Periodic boundary conditions */
|
||||
|
||||
if(i & (1<<(N-1)))
|
||||
{
|
||||
if(i & 1)
|
||||
k--;
|
||||
else
|
||||
k++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if(i & 1)
|
||||
k++;
|
||||
else
|
||||
k--;
|
||||
}
|
||||
|
||||
V[i] = k;
|
||||
}
|
||||
|
||||
for(g=0.9; g<1.1; g+=0.01)
|
||||
{
|
||||
|
||||
reg = quantum_new_qureg_size(1<<N, N);
|
||||
|
||||
for(i=0; i<(1<<N); i++)
|
||||
reg.amplitude[i] = rand();
|
||||
|
||||
hreg = calloc(1<<N, sizeof(quantum_reg));
|
||||
|
||||
assert(hreg);
|
||||
|
||||
for(i=0; i<(1<<N); i++)
|
||||
hreg[i] = H(i, 0);
|
||||
|
||||
E0 = quantum_groundstate(®, 1e-12, H2, QUANTUM_SOLVER_LANCZOS, 0);
|
||||
|
||||
m = 0;
|
||||
m2 = 0;
|
||||
|
||||
for(i=0; i<(1<<N); i++)
|
||||
{
|
||||
k = 0;
|
||||
for(j=0; j<N; j++)
|
||||
{
|
||||
if(i & (1<<j))
|
||||
k--;
|
||||
else
|
||||
k++;
|
||||
}
|
||||
m += quantum_prob(reg.amplitude[i])*abs(k);
|
||||
m2 += quantum_prob(reg.amplitude[i])*k*k;
|
||||
}
|
||||
|
||||
m /= N;
|
||||
m2 /= N;
|
||||
|
||||
printf("%f\t%i\t%f\t%f\t%f\n", g, N, E0, m, m2-m*m);
|
||||
|
||||
quantum_delete_qureg(®);
|
||||
|
||||
for(i=0; i<(1<<N); i++)
|
||||
quantum_delete_qureg(&hreg[i]);
|
||||
|
||||
free(hreg);
|
||||
}
|
||||
|
||||
free(V);
|
||||
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
}
|
70
lapack.c
70
lapack.c
@@ -1,6 +1,6 @@
|
||||
/* lapack.c: LAPACK interface
|
||||
|
||||
Copyright 2008 Bjoern Butscher, Hendrik Weimer
|
||||
Copyright 2008-2013 Hendrik Weimer
|
||||
|
||||
This file is part of libquantum
|
||||
|
||||
@@ -22,6 +22,7 @@
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "lapack.h"
|
||||
#include "matrix.h"
|
||||
@@ -34,10 +35,14 @@ extern void cheev_(char *jobz, char *uplo, int *n, float _Complex *A, int *lda,
|
||||
float *w, float _Complex *work, int *lwork, float *rwork,
|
||||
int *info);
|
||||
|
||||
extern void zheev_(char *jobz, char *uplo, int *n, double _Complex *A, int *lda,
|
||||
double *w, double _Complex *work, int *lwork, double *rwork,
|
||||
int *info);
|
||||
|
||||
void
|
||||
quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
|
||||
quantum_diag_time(double t, quantum_reg *reg0, quantum_reg *regt,
|
||||
quantum_reg *tmp1, quantum_reg *tmp2, quantum_matrix H,
|
||||
float **w)
|
||||
REAL_FLOAT **w)
|
||||
{
|
||||
#ifdef HAVE_LIBLAPACK
|
||||
char jobz = 'V';
|
||||
@@ -45,32 +50,39 @@ quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
|
||||
int dim = H.cols;
|
||||
COMPLEX_FLOAT *work;
|
||||
int lwork = -1;
|
||||
float rwork[3*dim-2];
|
||||
REAL_FLOAT rwork[3*dim-2];
|
||||
int info;
|
||||
int i;
|
||||
int i, j;
|
||||
void *p;
|
||||
|
||||
if(tmp2->size != reg0->size)
|
||||
{
|
||||
/* perform diagonalization */
|
||||
|
||||
p = regt->node;
|
||||
for(i=0; i<dim; i++)
|
||||
{
|
||||
for(j=0; j<dim; j++)
|
||||
{
|
||||
if(sqrt(quantum_prob(M(H, i, j) - quantum_conj(M(H, j, i))))
|
||||
> 1e-6)
|
||||
quantum_error(QUANTUM_EHERMITIAN);
|
||||
}
|
||||
}
|
||||
|
||||
p = regt->amplitude;
|
||||
*regt = *reg0;
|
||||
regt->node = realloc(p, regt->size*sizeof(quantum_reg_node));
|
||||
for(i=0; i<reg0->size; i++)
|
||||
regt->node[i].state = i;
|
||||
regt->amplitude = realloc(p, regt->size*sizeof(COMPLEX_FLOAT));
|
||||
|
||||
p = tmp1->node;
|
||||
p = tmp1->amplitude;
|
||||
*tmp1 = *reg0;
|
||||
tmp1->node = realloc(p, regt->size*sizeof(quantum_reg_node));
|
||||
for(i=0; i<reg0->size; i++)
|
||||
tmp1->node[i].state = i;
|
||||
tmp1->amplitude = realloc(p, regt->size*sizeof(COMPLEX_FLOAT));
|
||||
|
||||
p = tmp2->node;
|
||||
p = tmp2->amplitude;
|
||||
*tmp2 = *reg0;
|
||||
tmp2->node = realloc(p, regt->size*sizeof(quantum_reg_node));
|
||||
for(i=0; i<reg0->size; i++)
|
||||
tmp2->node[i].state = i;
|
||||
tmp2->amplitude = realloc(p, regt->size*sizeof(COMPLEX_FLOAT));
|
||||
|
||||
if(!(regt->amplitude && tmp1->amplitude && tmp2->amplitude))
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
*w = malloc(dim*sizeof(float));
|
||||
|
||||
@@ -82,13 +94,14 @@ quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
|
||||
if(!work)
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
cheev_(&jobz, &uplo, &dim, H.t, &dim, *w, work, &lwork, rwork, &info);
|
||||
QUANTUM_LAPACK_SOLVER(&jobz, &uplo, &dim, H.t, &dim, *w, work, &lwork,
|
||||
rwork, &info);
|
||||
|
||||
if(info < 0)
|
||||
quantum_error(QUANTUM_ELAPACKARG);
|
||||
|
||||
else if(info > 0)
|
||||
quantum_error(QUANTUM_ELAPACKCHEEV);
|
||||
quantum_error(QUANTUM_ELAPACKCONV);
|
||||
|
||||
lwork = (int) work[0];
|
||||
work = realloc(work, lwork*sizeof(COMPLEX_FLOAT));
|
||||
@@ -96,13 +109,14 @@ quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
|
||||
if(!work)
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
cheev_(&jobz, &uplo, &dim, H.t, &dim, *w, work, &lwork, rwork, &info);
|
||||
QUANTUM_LAPACK_SOLVER(&jobz, &uplo, &dim, H.t, &dim, *w, work, &lwork,
|
||||
rwork, &info);
|
||||
|
||||
if(info < 0)
|
||||
quantum_error(QUANTUM_ELAPACKARG);
|
||||
|
||||
else if(info > 0)
|
||||
quantum_error(QUANTUM_ELAPACKCHEEV);
|
||||
quantum_error(QUANTUM_ELAPACKCONV);
|
||||
|
||||
free(work);
|
||||
|
||||
@@ -113,17 +127,13 @@ quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
|
||||
|
||||
if(tmp1->size != reg0->size)
|
||||
{
|
||||
p = regt->node;
|
||||
p = regt->amplitude;
|
||||
*regt = *reg0;
|
||||
regt->node = realloc(p, regt->size*sizeof(quantum_reg_node));
|
||||
for(i=0; i<reg0->size; i++)
|
||||
regt->node[i].state = i;
|
||||
regt->amplitude = realloc(p, regt->size*sizeof(COMPLEX_FLOAT));
|
||||
|
||||
p = tmp1->node;
|
||||
p = tmp1->amplitude;
|
||||
*tmp1 = *reg0;
|
||||
tmp1->node = realloc(p, regt->size*sizeof(quantum_reg_node));
|
||||
for(i=0; i<reg0->size; i++)
|
||||
tmp1->node[i].state = i;
|
||||
tmp1->amplitude = realloc(p, regt->size*sizeof(COMPLEX_FLOAT));
|
||||
|
||||
quantum_adjoint(&H);
|
||||
|
||||
@@ -133,7 +143,7 @@ quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
|
||||
}
|
||||
|
||||
for(i=0; i<dim; i++)
|
||||
tmp2->node[i].amplitude = quantum_cexp(-(*w)[i]*t)*tmp1->node[i].amplitude;
|
||||
tmp2->amplitude[i] = quantum_cexp(-(*w)[i]*t)*tmp1->amplitude[i];
|
||||
|
||||
quantum_mvmult(regt, H, tmp2);
|
||||
|
||||
|
14
lapack.h
14
lapack.h
@@ -1,6 +1,6 @@
|
||||
/* time.c: Declarations for lapack.h
|
||||
/* lapack.h: Declarations for lapack.c
|
||||
|
||||
Copyright 2006 Bjoern Butscher, Hendrik Weimer
|
||||
Copyright 2006-2013 Hendrik Weimer
|
||||
|
||||
This file is part of libquantum
|
||||
|
||||
@@ -29,8 +29,14 @@
|
||||
#include "matrix.h"
|
||||
#include "qureg.h"
|
||||
|
||||
extern void quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
|
||||
#ifdef USE_DOUBLE
|
||||
#define QUANTUM_LAPACK_SOLVER zheev_
|
||||
#else
|
||||
#define QUANTUM_LAPACK_SOLVER cheev_
|
||||
#endif
|
||||
|
||||
extern void quantum_diag_time(double t, quantum_reg *reg0, quantum_reg *regt,
|
||||
quantum_reg *tmp1, quantum_reg *tmp2,
|
||||
quantum_matrix H, float **w);
|
||||
quantum_matrix H, REAL_FLOAT **w);
|
||||
|
||||
#endif
|
||||
|
21
matrix.c
21
matrix.c
@@ -89,8 +89,18 @@ void
|
||||
quantum_print_matrix(quantum_matrix m)
|
||||
{
|
||||
int i, j, z=0;
|
||||
int print_imag = 0;
|
||||
/* int l; */
|
||||
|
||||
for(i=0; i<m.rows; i++)
|
||||
{
|
||||
for(j=0; j<m.cols; j++)
|
||||
{
|
||||
if(quantum_imag(M(m, j, i))/quantum_real(M(m, j, i)) > 1e-3)
|
||||
print_imag = 1;
|
||||
}
|
||||
}
|
||||
|
||||
while ((1 << z++) < m.rows);
|
||||
z--;
|
||||
|
||||
@@ -104,8 +114,15 @@ quantum_print_matrix(quantum_matrix m)
|
||||
} */
|
||||
|
||||
for(j=0; j<m.cols; j++)
|
||||
printf("%g %+gi ", quantum_real(M(m, j, i)),
|
||||
quantum_imag(M(m, j, i)));
|
||||
{
|
||||
if(print_imag)
|
||||
printf("%3.3f%+.3fi ", quantum_real(M(m, j, i)),
|
||||
quantum_imag(M(m, j, i)));
|
||||
else
|
||||
// printf("%3.3f ", quantum_real(M(m, j, i)));
|
||||
printf("%+.1f ", quantum_real(M(m, j, i)));
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
|
36
measure.c
36
measure.c
@@ -64,9 +64,9 @@ quantum_measure(quantum_reg reg)
|
||||
given base state - r, return the base state as the
|
||||
result. Otherwise, continue with the next base state. */
|
||||
|
||||
r -= quantum_prob_inline(reg.node[i].amplitude);
|
||||
r -= quantum_prob_inline(reg.amplitude[i]);
|
||||
if(0 >= r)
|
||||
return reg.node[i].state;
|
||||
return reg.state[i];
|
||||
}
|
||||
|
||||
/* The sum of all probabilities is less than 1. Usually, the cause
|
||||
@@ -100,8 +100,8 @@ quantum_bmeasure(int pos, quantum_reg *reg)
|
||||
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
if(!(reg->node[i].state & pos2))
|
||||
pa += quantum_prob_inline(reg->node[i].amplitude);
|
||||
if(!(reg->state[i] & pos2))
|
||||
pa += quantum_prob_inline(reg->amplitude[i]);
|
||||
}
|
||||
|
||||
/* Compare the probability for 0 with a random number and determine
|
||||
@@ -141,8 +141,8 @@ quantum_bmeasure_bitpreserve(int pos, quantum_reg *reg)
|
||||
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
if(!(reg->node[i].state & pos2))
|
||||
pa += quantum_prob_inline(reg->node[i].amplitude);
|
||||
if(!(reg->state[i] & pos2))
|
||||
pa += quantum_prob_inline(reg->amplitude[i]);
|
||||
}
|
||||
|
||||
/* Compare the probability for 0 with a random number and determine
|
||||
@@ -158,23 +158,23 @@ quantum_bmeasure_bitpreserve(int pos, quantum_reg *reg)
|
||||
|
||||
for(i=0;i<reg->size;i++)
|
||||
{
|
||||
if(reg->node[i].state & pos2)
|
||||
if(reg->state[i] & pos2)
|
||||
{
|
||||
if(!result)
|
||||
reg->node[i].amplitude = 0;
|
||||
reg->amplitude[i] = 0;
|
||||
else
|
||||
{
|
||||
d += quantum_prob_inline(reg->node[i].amplitude);
|
||||
d += quantum_prob_inline(reg->amplitude[i]);
|
||||
size++;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if(result)
|
||||
reg->node[i].amplitude = 0;
|
||||
reg->amplitude[i] = 0;
|
||||
else
|
||||
{
|
||||
d += quantum_prob_inline(reg->node[i].amplitude);
|
||||
d += quantum_prob_inline(reg->amplitude[i]);
|
||||
size++;
|
||||
}
|
||||
}
|
||||
@@ -183,12 +183,14 @@ quantum_bmeasure_bitpreserve(int pos, quantum_reg *reg)
|
||||
/* Build the new quantum register */
|
||||
|
||||
out.size = size;
|
||||
out.node = calloc(size, sizeof(quantum_reg_node));
|
||||
out.state = calloc(size, sizeof(MAX_UNSIGNED));
|
||||
out.amplitude = calloc(size, sizeof(COMPLEX_FLOAT));
|
||||
|
||||
if(!out.node)
|
||||
if(!(out.state && out.amplitude))
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(size * sizeof(quantum_reg_node));
|
||||
quantum_memman(size * (sizeof(MAX_UNSIGNED) + sizeof(COMPLEX_FLOAT)));
|
||||
|
||||
out.hashw = reg->hashw;
|
||||
out.hash = reg->hash;
|
||||
out.width = reg->width;
|
||||
@@ -198,10 +200,10 @@ quantum_bmeasure_bitpreserve(int pos, quantum_reg *reg)
|
||||
|
||||
for(i=0, j=0; i<reg->size; i++)
|
||||
{
|
||||
if(reg->node[i].amplitude)
|
||||
if(reg->amplitude[i])
|
||||
{
|
||||
out.node[j].state = reg->node[i].state;
|
||||
out.node[j].amplitude = reg->node[i].amplitude * 1 / (float) sqrt(d);
|
||||
out.state[j] = reg->state[i];
|
||||
out.amplitude[j] = reg->amplitude[i] * 1 / (float) sqrt(d);
|
||||
|
||||
j++;
|
||||
}
|
||||
|
74
objcode.c
74
objcode.c
@@ -336,16 +336,30 @@ quantum_objcode_run(char *file, quantum_reg *reg)
|
||||
switch(operation)
|
||||
{
|
||||
case INIT:
|
||||
fread(buf, sizeof(MAX_UNSIGNED), 1, fhd);
|
||||
if(!fread(buf, sizeof(MAX_UNSIGNED), 1, fhd))
|
||||
{
|
||||
quantum_error(QUANTUM_FAILURE);
|
||||
break;
|
||||
}
|
||||
mu = quantum_char2mu(buf);
|
||||
*reg = quantum_new_qureg(mu, 12);
|
||||
|
||||
break;
|
||||
|
||||
case CNOT:
|
||||
case COND_PHASE:
|
||||
fread(buf, sizeof(int), 1, fhd);
|
||||
if(!fread(buf, sizeof(int), 1, fhd))
|
||||
{
|
||||
quantum_error(QUANTUM_FAILURE);
|
||||
break;
|
||||
}
|
||||
j = quantum_char2int(buf);
|
||||
fread(buf, sizeof(int), 1, fhd);
|
||||
if(!fread(buf, sizeof(int), 1, fhd))
|
||||
{
|
||||
quantum_error(QUANTUM_FAILURE);
|
||||
break;
|
||||
}
|
||||
|
||||
k = quantum_char2int(buf);
|
||||
switch(operation)
|
||||
{
|
||||
@@ -357,11 +371,23 @@ quantum_objcode_run(char *file, quantum_reg *reg)
|
||||
break;
|
||||
|
||||
case TOFFOLI:
|
||||
fread(buf, sizeof(int), 1, fhd);
|
||||
if(!fread(buf, sizeof(int), 1, fhd))
|
||||
{
|
||||
quantum_error(QUANTUM_FAILURE);
|
||||
break;
|
||||
}
|
||||
j = quantum_char2int(buf);
|
||||
fread(buf, sizeof(int), 1, fhd);
|
||||
if(!fread(buf, sizeof(int), 1, fhd))
|
||||
{
|
||||
quantum_error(QUANTUM_FAILURE);
|
||||
break;
|
||||
}
|
||||
k = quantum_char2int(buf);
|
||||
fread(buf, sizeof(int), 1, fhd);
|
||||
if(!fread(buf, sizeof(int), 1, fhd))
|
||||
{
|
||||
quantum_error(QUANTUM_FAILURE);
|
||||
break;
|
||||
}
|
||||
l = quantum_char2int(buf);
|
||||
quantum_toffoli(j, k, l, reg);
|
||||
break;
|
||||
@@ -373,7 +399,11 @@ quantum_objcode_run(char *file, quantum_reg *reg)
|
||||
case BMEASURE:
|
||||
case BMEASURE_P:
|
||||
case SWAPLEADS:
|
||||
fread(buf, sizeof(int), 1, fhd);
|
||||
if(!fread(buf, sizeof(int), 1, fhd))
|
||||
{
|
||||
quantum_error(QUANTUM_FAILURE);
|
||||
break;
|
||||
}
|
||||
j = quantum_char2int(buf);
|
||||
switch(operation)
|
||||
{
|
||||
@@ -399,9 +429,17 @@ quantum_objcode_run(char *file, quantum_reg *reg)
|
||||
case ROT_Z:
|
||||
case PHASE_KICK:
|
||||
case PHASE_SCALE:
|
||||
fread(buf, sizeof(int), 1, fhd);
|
||||
if(!fread(buf, sizeof(int), 1, fhd))
|
||||
{
|
||||
quantum_error(QUANTUM_FAILURE);
|
||||
break;
|
||||
}
|
||||
j = quantum_char2int(buf);
|
||||
fread(buf, sizeof(double), 1, fhd);
|
||||
if(!fread(buf, sizeof(double), 1, fhd))
|
||||
{
|
||||
quantum_error(QUANTUM_FAILURE);
|
||||
break;
|
||||
}
|
||||
d = quantum_char2double(buf);
|
||||
switch(operation)
|
||||
{
|
||||
@@ -419,11 +457,23 @@ quantum_objcode_run(char *file, quantum_reg *reg)
|
||||
break;
|
||||
|
||||
case CPHASE_KICK:
|
||||
fread(buf, sizeof(int), 1, fhd);
|
||||
if(!fread(buf, sizeof(int), 1, fhd))
|
||||
{
|
||||
quantum_error(QUANTUM_FAILURE);
|
||||
break;
|
||||
}
|
||||
j = quantum_char2int(buf);
|
||||
fread(buf, sizeof(int), 1, fhd);
|
||||
if(!fread(buf, sizeof(int), 1, fhd))
|
||||
{
|
||||
quantum_error(QUANTUM_FAILURE);
|
||||
break;
|
||||
}
|
||||
k = quantum_char2int(buf);
|
||||
fread(buf, sizeof(double), 1, fhd);
|
||||
if(!fread(buf, sizeof(double), 1, fhd))
|
||||
{
|
||||
quantum_error(QUANTUM_FAILURE);
|
||||
break;
|
||||
}
|
||||
d = quantum_char2double(buf);
|
||||
quantum_cond_phase_kick(j, k, d, reg);
|
||||
break;
|
||||
|
14
qec.c
14
qec.c
@@ -243,34 +243,34 @@ quantum_toffoli_ft(int control1, int control2, int target, quantum_reg *reg)
|
||||
c1 = 0;
|
||||
c2 = 0;
|
||||
|
||||
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control1))
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control1))
|
||||
c1 = 1;
|
||||
if(reg->node[i].state
|
||||
if(reg->state[i]
|
||||
& ((MAX_UNSIGNED) 1 << (control1+width)))
|
||||
{
|
||||
c1 ^= 1;
|
||||
}
|
||||
if(reg->node[i].state
|
||||
if(reg->state[i]
|
||||
& ((MAX_UNSIGNED) 1 << (control1+2*width)))
|
||||
{
|
||||
c1 ^= 1;
|
||||
}
|
||||
|
||||
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control2))
|
||||
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control2))
|
||||
c2 = 1;
|
||||
if(reg->node[i].state
|
||||
if(reg->state[i]
|
||||
& ((MAX_UNSIGNED) 1 << (control2+width)))
|
||||
{
|
||||
c2 ^= 1;
|
||||
}
|
||||
if(reg->node[i].state
|
||||
if(reg->state[i]
|
||||
& ((MAX_UNSIGNED) 1 << (control2+2*width)))
|
||||
{
|
||||
c2 ^= 1;
|
||||
}
|
||||
|
||||
if(c1 == 1 && c2 == 1)
|
||||
reg->node[i].state = reg->node[i].state ^ mask;
|
||||
reg->state[i] = reg->state[i] ^ mask;
|
||||
|
||||
}
|
||||
|
||||
|
53
qtime.c
53
qtime.c
@@ -1,6 +1,6 @@
|
||||
/* qtime.c: Time evolution of a quantum system
|
||||
|
||||
Copyright 2006,2007 Bjoern Butscher, Hendrik Weimer
|
||||
Copyright 2006-2013 Hendrik Weimer
|
||||
|
||||
This file is part of libquantum
|
||||
|
||||
@@ -30,7 +30,10 @@
|
||||
#include "complex.h"
|
||||
#include "config.h"
|
||||
|
||||
/* Forth-order Runge-Kutta */
|
||||
/* Forth-order Runge-Kutta
|
||||
|
||||
Flags: QUANTUM_RK4_NODELETE: Do not delete quantum_reg returned by H
|
||||
QUANTUM_RK4_IMAGINARY: Imaginary time evolution */
|
||||
|
||||
void
|
||||
quantum_rk4(quantum_reg *reg, double t, double dt,
|
||||
@@ -41,6 +44,7 @@ quantum_rk4(quantum_reg *reg, double t, double dt,
|
||||
int i;
|
||||
void *hash;
|
||||
int hashw;
|
||||
COMPLEX_FLOAT step = dt;
|
||||
|
||||
hash = reg->hash;
|
||||
reg->hash = 0;
|
||||
@@ -48,36 +52,39 @@ quantum_rk4(quantum_reg *reg, double t, double dt,
|
||||
hashw = reg->hashw;
|
||||
reg->hashw = 0;
|
||||
|
||||
if(!(flags & QUANTUM_RK4_IMAGINARY))
|
||||
step *= IMAGINARY;
|
||||
|
||||
/* k1 */
|
||||
k = quantum_matrix_qureg(H, t, reg, flags);
|
||||
quantum_scalar_qureg(-IMAGINARY*dt/2.0, &k);
|
||||
k = quantum_matrix_qureg(H, t, reg, flags & QUANTUM_RK4_NODELETE);
|
||||
quantum_scalar_qureg(-step/2.0, &k);
|
||||
tmp = quantum_vectoradd(reg, &k);
|
||||
quantum_scalar_qureg(1.0/3.0, &k);
|
||||
out = quantum_vectoradd(reg, &k);
|
||||
quantum_delete_qureg(&k);
|
||||
|
||||
/* k2 */
|
||||
k = quantum_matrix_qureg(H, t+dt/2.0, &tmp, flags);
|
||||
k = quantum_matrix_qureg(H, t+dt/2.0, &tmp, flags & QUANTUM_RK4_NODELETE);
|
||||
quantum_delete_qureg(&tmp);
|
||||
quantum_scalar_qureg(-IMAGINARY*dt/2.0, &k);
|
||||
quantum_scalar_qureg(-step/2.0, &k);
|
||||
tmp = quantum_vectoradd(reg, &k);
|
||||
quantum_scalar_qureg(2.0/3.0, &k);
|
||||
quantum_vectoradd_inplace(&out, &k);
|
||||
quantum_delete_qureg(&k);
|
||||
|
||||
/* k3 */
|
||||
k = quantum_matrix_qureg(H, t+dt/2.0, &tmp, flags);
|
||||
k = quantum_matrix_qureg(H, t+dt/2.0, &tmp, flags & QUANTUM_RK4_NODELETE);
|
||||
quantum_delete_qureg(&tmp);
|
||||
quantum_scalar_qureg(-IMAGINARY*dt, &k);
|
||||
quantum_scalar_qureg(-step, &k);
|
||||
tmp = quantum_vectoradd(reg, &k);
|
||||
quantum_scalar_qureg(1.0/3.0, &k);
|
||||
quantum_vectoradd_inplace(&out, &k);
|
||||
quantum_delete_qureg(&k);
|
||||
|
||||
/* k4 */
|
||||
k = quantum_matrix_qureg(H, t+dt, &tmp, flags);
|
||||
k = quantum_matrix_qureg(H, t+dt, &tmp, flags & QUANTUM_RK4_NODELETE);
|
||||
quantum_delete_qureg(&tmp);
|
||||
quantum_scalar_qureg(-IMAGINARY*dt/6.0, &k);
|
||||
quantum_scalar_qureg(-step/6.0, &k);
|
||||
quantum_vectoradd_inplace(&out, &k);
|
||||
|
||||
quantum_delete_qureg(&k);
|
||||
@@ -85,10 +92,14 @@ quantum_rk4(quantum_reg *reg, double t, double dt,
|
||||
|
||||
/* Normalize quantum register */
|
||||
|
||||
for(i=0; i<out.size; i++)
|
||||
r += quantum_prob(out.node[i].amplitude);
|
||||
if(flags & QUANTUM_RK4_IMAGINARY)
|
||||
{
|
||||
|
||||
// quantum_scalar_qureg(sqrt(1.0/r), &out);
|
||||
for(i=0; i<out.size; i++)
|
||||
r += quantum_prob(out.amplitude[i]);
|
||||
|
||||
quantum_scalar_qureg(sqrt(1.0/r), &out);
|
||||
}
|
||||
|
||||
out.hash = hash;
|
||||
out.hashw = hashw;
|
||||
@@ -130,10 +141,8 @@ quantum_rk4a(quantum_reg *reg, double t, double *dt, double epsilon,
|
||||
|
||||
for(i=0;i<reg->size;i++)
|
||||
{
|
||||
r = 2*sqrt(quantum_prob(reg->node[i].amplitude
|
||||
- reg2.node[i].amplitude)/
|
||||
quantum_prob(reg->node[i].amplitude
|
||||
+ reg2.node[i].amplitude));
|
||||
r = 2*sqrt(quantum_prob(reg->amplitude[i] - reg2.amplitude[i])/
|
||||
quantum_prob(reg->amplitude[i] + reg2.amplitude[i]));
|
||||
|
||||
if(r > delta)
|
||||
delta = r;
|
||||
@@ -155,8 +164,14 @@ quantum_rk4a(quantum_reg *reg, double t, double *dt, double epsilon,
|
||||
|
||||
if(delta > epsilon)
|
||||
{
|
||||
memcpy(reg->node, old.node, reg->size*sizeof(quantum_reg_node));
|
||||
memcpy(reg2.node, old.node, reg->size*sizeof(quantum_reg_node));
|
||||
memcpy(reg->amplitude, old.amplitude,
|
||||
reg->size*sizeof(COMPLEX_FLOAT));
|
||||
memcpy(reg2.amplitude, old.amplitude,
|
||||
reg->size*sizeof(COMPLEX_FLOAT));
|
||||
if(reg->state && old.state)
|
||||
memcpy(reg->state, old.state, reg->size*sizeof(MAX_UNSIGNED));
|
||||
if(reg2.state && old.state)
|
||||
memcpy(reg2.state, old.state, reg->size*sizeof(MAX_UNSIGNED));
|
||||
}
|
||||
|
||||
} while(delta > epsilon);
|
||||
|
7
qtime.h
7
qtime.h
@@ -1,6 +1,6 @@
|
||||
/* qtime.h: Declarations for qtime.c
|
||||
|
||||
Copyright 2006,2007 Bjoern Butscher, Hendrik Weimer
|
||||
Copyright 2006-2013 Hendrik Weimer
|
||||
|
||||
This file is part of libquantum
|
||||
|
||||
@@ -28,6 +28,11 @@
|
||||
#include "qureg.h"
|
||||
#include "config.h"
|
||||
|
||||
enum {
|
||||
QUANTUM_RK4_NODELETE = 1,
|
||||
QUANTUM_RK4_IMAGINARY = 2
|
||||
};
|
||||
|
||||
extern void quantum_rk4(quantum_reg *reg, double t, double dt,
|
||||
quantum_reg H(MAX_UNSIGNED, double), int flags);
|
||||
extern double quantum_rk4a(quantum_reg *reg, double t, double *dt,
|
||||
|
33
quantum.h.in
33
quantum.h.in
@@ -1,6 +1,6 @@
|
||||
/* quantum.h: Header file for libquantum
|
||||
|
||||
Copyright 2003-2008 Bjoern Butscher, Hendrik Weimer
|
||||
Copyright 2003-2013 Bjoern Butscher, Hendrik Weimer
|
||||
|
||||
This file is part of libquantum
|
||||
|
||||
@@ -45,14 +45,6 @@ struct quantum_matrix_struct {
|
||||
|
||||
typedef struct quantum_matrix_struct quantum_matrix;
|
||||
|
||||
struct quantum_reg_node_struct
|
||||
{
|
||||
COMPLEX_FLOAT amplitude; /* alpha_j */
|
||||
MAX_UNSIGNED state; /* j */
|
||||
};
|
||||
|
||||
typedef struct quantum_reg_node_struct quantum_reg_node;
|
||||
|
||||
/* The quantum register */
|
||||
|
||||
struct quantum_reg_struct
|
||||
@@ -60,7 +52,8 @@ struct quantum_reg_struct
|
||||
int width; /* number of qubits in the qureg */
|
||||
int size; /* number of non-zero vectors */
|
||||
int hashw; /* width of the hash array */
|
||||
quantum_reg_node *node;
|
||||
COMPLEX_FLOAT *amplitude;
|
||||
MAX_UNSIGNED *state;
|
||||
int *hash;
|
||||
};
|
||||
|
||||
@@ -75,8 +68,15 @@ struct quantum_density_op_struct
|
||||
|
||||
typedef struct quantum_density_op_struct quantum_density_op;
|
||||
|
||||
enum {
|
||||
QUANTUM_SOLVER_LANCZOS,
|
||||
QUANTUM_SOLVER_LANCZOS_MODIFIED,
|
||||
QUANTUM_SOLVER_IMAGINARY_TIME
|
||||
};
|
||||
|
||||
extern quantum_reg quantum_new_qureg(MAX_UNSIGNED initval, int width);
|
||||
extern quantum_reg quantum_new_qureg_size(int n, int width);
|
||||
extern quantum_reg quantum_new_qureg_sparse(int n, int width);
|
||||
extern void quantum_delete_qureg(quantum_reg *reg);
|
||||
extern void quantum_print_qureg(quantum_reg reg);
|
||||
extern void quantum_addscratch(int bits, quantum_reg *reg);
|
||||
@@ -103,6 +103,8 @@ extern void quantum_cond_phase(int control, int target, quantum_reg *reg);
|
||||
extern void quantum_cond_phase_inv(int control, int target, quantum_reg *reg);
|
||||
extern void quantum_cond_phase_kick(int control, int target, float gamma,
|
||||
quantum_reg *reg);
|
||||
extern void quantum_cond_phase_shift(int control, int target, float gamma,
|
||||
quantum_reg *reg);
|
||||
extern int quantum_gate_counter(int inc);
|
||||
|
||||
extern void quantum_qft(int width, quantum_reg *reg);
|
||||
@@ -125,7 +127,7 @@ extern void quantum_cancel(int *a, int *b);
|
||||
extern void quantum_frac_approx(int *a, int *b, int width);
|
||||
extern int quantum_getwidth(int n);
|
||||
|
||||
extern float quantum_prob(COMPLEX_FLOAT a);
|
||||
extern double quantum_prob(COMPLEX_FLOAT a);
|
||||
|
||||
extern float quantum_get_decoherence();
|
||||
extern void quantum_set_decoherence(float lambda);
|
||||
@@ -171,8 +173,13 @@ extern double quantum_rk4a(quantum_reg *reg, double t, double *dt,
|
||||
double epsilon,
|
||||
quantum_reg H(MAX_UNSIGNED, double), int flags);
|
||||
|
||||
extern void quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
|
||||
extern void quantum_diag_time(double t, quantum_reg *reg0, quantum_reg *regt,
|
||||
quantum_reg *tmp1, quantum_reg *tmp2,
|
||||
quantum_matrix H, float **w);
|
||||
quantum_matrix H, @RF_TYPE@ **w);
|
||||
|
||||
|
||||
extern double quantum_groundstate(quantum_reg *reg, double epsilon,
|
||||
quantum_reg H(MAX_UNSIGNED, double),
|
||||
int solver, double stepsize);
|
||||
|
||||
#endif
|
||||
|
372
qureg.c
372
qureg.c
@@ -1,6 +1,6 @@
|
||||
/* qureg.c: Quantum register management
|
||||
|
||||
Copyright 2003, 2004, 2006 Bjoern Butscher, Hendrik Weimer
|
||||
Copyright 2003-2013 Bjoern Butscher, Hendrik Weimer
|
||||
|
||||
This file is part of libquantum
|
||||
|
||||
@@ -59,12 +59,13 @@ quantum_matrix2qureg(quantum_matrix *m, int width)
|
||||
reg.size = size;
|
||||
reg.hashw = width + 2;
|
||||
|
||||
reg.node = calloc(size, sizeof(quantum_reg_node));
|
||||
reg.amplitude = calloc(size, sizeof(COMPLEX_FLOAT));
|
||||
reg.state = calloc(size, sizeof(MAX_UNSIGNED));
|
||||
|
||||
if(!reg.node)
|
||||
if(!(reg.state && reg.amplitude))
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(size * sizeof(quantum_reg_node));
|
||||
quantum_memman(size * (sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
|
||||
|
||||
/* Allocate the hash table */
|
||||
|
||||
@@ -82,8 +83,8 @@ quantum_matrix2qureg(quantum_matrix *m, int width)
|
||||
{
|
||||
if(m->t[i])
|
||||
{
|
||||
reg.node[j].state = i;
|
||||
reg.node[j].amplitude = m->t[i];
|
||||
reg.state[j] = i;
|
||||
reg.amplitude[j] = m->t[i];
|
||||
j++;
|
||||
}
|
||||
}
|
||||
@@ -105,12 +106,13 @@ quantum_new_qureg(MAX_UNSIGNED initval, int width)
|
||||
|
||||
/* Allocate memory for 1 base state */
|
||||
|
||||
reg.node = calloc(1, sizeof(quantum_reg_node));
|
||||
reg.state = calloc(1, sizeof(MAX_UNSIGNED));
|
||||
reg.amplitude = calloc(1, sizeof(COMPLEX_FLOAT));
|
||||
|
||||
if(!reg.node)
|
||||
if(!(reg.state && reg.amplitude))
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(sizeof(quantum_reg_node));
|
||||
quantum_memman(sizeof(MAX_UNSIGNED) + sizeof(COMPLEX_FLOAT));
|
||||
|
||||
/* Allocate the hash table */
|
||||
|
||||
@@ -123,8 +125,8 @@ quantum_new_qureg(MAX_UNSIGNED initval, int width)
|
||||
|
||||
/* Initialize the quantum register */
|
||||
|
||||
reg.node[0].state = initval;
|
||||
reg.node[0].amplitude = 1;
|
||||
reg.state[0] = initval;
|
||||
reg.amplitude[0] = 1;
|
||||
|
||||
/* Initialize the PRNG */
|
||||
|
||||
@@ -158,12 +160,38 @@ quantum_new_qureg_size(int n, int width)
|
||||
|
||||
/* Allocate memory for n basis states */
|
||||
|
||||
reg.node = calloc(n, sizeof(quantum_reg_node));
|
||||
reg.amplitude = calloc(n, sizeof(COMPLEX_FLOAT));
|
||||
reg.state = 0;
|
||||
|
||||
if(!reg.node)
|
||||
if(!reg.amplitude)
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(n*sizeof(quantum_reg_node));
|
||||
quantum_memman(n*sizeof(COMPLEX_FLOAT));
|
||||
|
||||
return reg;
|
||||
}
|
||||
|
||||
/* Returns an empty sparse quantum register of size N */
|
||||
|
||||
quantum_reg
|
||||
quantum_new_qureg_sparse(int n, int width)
|
||||
{
|
||||
quantum_reg reg;
|
||||
|
||||
reg.width = width;
|
||||
reg.size = n;
|
||||
reg.hashw = 0;
|
||||
reg.hash = 0;
|
||||
|
||||
/* Allocate memory for n basis states */
|
||||
|
||||
reg.amplitude = calloc(n, sizeof(COMPLEX_FLOAT));
|
||||
reg.state = calloc(n, sizeof(MAX_UNSIGNED));
|
||||
|
||||
if(!(reg.amplitude && reg.state))
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(n*(sizeof(COMPLEX_FLOAT)+sizeof(MAX_UNSIGNED)));
|
||||
|
||||
return reg;
|
||||
}
|
||||
@@ -179,7 +207,7 @@ quantum_qureg2matrix(quantum_reg reg)
|
||||
m = quantum_new_matrix(1, 1 << reg.width);
|
||||
|
||||
for(i=0; i<reg.size; i++)
|
||||
m.t[reg.node[i].state] = reg.node[i].amplitude;
|
||||
m.t[reg.state[i]] = reg.amplitude[i];
|
||||
|
||||
return m;
|
||||
}
|
||||
@@ -201,9 +229,18 @@ quantum_delete_qureg(quantum_reg *reg)
|
||||
{
|
||||
if(reg->hashw && reg->hash)
|
||||
quantum_destroy_hash(reg);
|
||||
free(reg->node);
|
||||
quantum_memman(-reg->size * sizeof(quantum_reg_node));
|
||||
reg->node = 0;
|
||||
|
||||
free(reg->amplitude);
|
||||
quantum_memman(-reg->size * sizeof(COMPLEX_FLOAT));
|
||||
reg->amplitude = 0;
|
||||
|
||||
if(reg->state)
|
||||
{
|
||||
free(reg->state);
|
||||
quantum_memman(-reg->size * sizeof(MAX_UNSIGNED));
|
||||
reg->state = 0;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* Delete a quantum register but leave the hash table alive */
|
||||
@@ -211,9 +248,16 @@ quantum_delete_qureg(quantum_reg *reg)
|
||||
void
|
||||
quantum_delete_qureg_hashpreserve(quantum_reg *reg)
|
||||
{
|
||||
free(reg->node);
|
||||
quantum_memman(-reg->size * sizeof(quantum_reg_node));
|
||||
reg->node = 0;
|
||||
free(reg->amplitude);
|
||||
quantum_memman(-reg->size * sizeof(COMPLEX_FLOAT));
|
||||
reg->amplitude = 0;
|
||||
|
||||
if(reg->state)
|
||||
{
|
||||
free(reg->state);
|
||||
quantum_memman(-reg->size * sizeof(MAX_UNSIGNED));
|
||||
reg->state = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Copy the contents of src to dst */
|
||||
@@ -225,12 +269,27 @@ quantum_copy_qureg(quantum_reg *src, quantum_reg *dst)
|
||||
|
||||
/* Allocate memory for basis states */
|
||||
|
||||
dst->node = calloc(dst->size, sizeof(quantum_reg_node));
|
||||
dst->amplitude = calloc(dst->size, sizeof(COMPLEX_FLOAT));
|
||||
|
||||
if(!dst->node)
|
||||
if(!dst->amplitude)
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(dst->size*sizeof(quantum_reg_node));
|
||||
quantum_memman(dst->size*sizeof(COMPLEX_FLOAT));
|
||||
|
||||
memcpy(dst->amplitude, src->amplitude, src->size*sizeof(COMPLEX_FLOAT));
|
||||
|
||||
if(src->state)
|
||||
{
|
||||
dst->state = calloc(dst->size, sizeof(MAX_UNSIGNED));
|
||||
|
||||
if(!dst->state)
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(dst->size*sizeof(MAX_UNSIGNED));
|
||||
|
||||
memcpy(dst->state, src->state, src->size*sizeof(MAX_UNSIGNED));
|
||||
|
||||
}
|
||||
|
||||
/* Allocate the hash table */
|
||||
|
||||
@@ -244,8 +303,6 @@ quantum_copy_qureg(quantum_reg *src, quantum_reg *dst)
|
||||
quantum_memman((1 << dst->hashw) * sizeof(int));
|
||||
}
|
||||
|
||||
memcpy(dst->node, src->node, src->size*sizeof(quantum_reg_node));
|
||||
|
||||
}
|
||||
|
||||
/* Print the contents of a quantum register to stdout */
|
||||
@@ -257,14 +314,14 @@ quantum_print_qureg(quantum_reg reg)
|
||||
|
||||
for(i=0; i<reg.size; i++)
|
||||
{
|
||||
printf("% f %+fi|%lli> (%e) (|", quantum_real(reg.node[i].amplitude),
|
||||
quantum_imag(reg.node[i].amplitude), reg.node[i].state,
|
||||
quantum_prob_inline(reg.node[i].amplitude));
|
||||
printf("% f %+fi|%lli> (%e) (|", quantum_real(reg.amplitude[i]),
|
||||
quantum_imag(reg.amplitude[i]), reg.state[i],
|
||||
quantum_prob_inline(reg.amplitude[i]));
|
||||
for(j=reg.width-1;j>=0;j--)
|
||||
{
|
||||
if(j % 4 == 3)
|
||||
printf(" ");
|
||||
printf("%i", ((((MAX_UNSIGNED) 1 << j) & reg.node[i].state) > 0));
|
||||
printf("%i", ((((MAX_UNSIGNED) 1 << j) & reg.state[i]) > 0));
|
||||
}
|
||||
|
||||
printf(">)\n");
|
||||
@@ -282,7 +339,7 @@ quantum_print_expn(quantum_reg reg)
|
||||
|
||||
for(i=0; i<reg.size; i++)
|
||||
{
|
||||
printf("%i: %lli\n", i, reg.node[i].state - i * (1 << (reg.width / 2)));
|
||||
printf("%i: %lli\n", i, reg.state[i] - i * (1 << (reg.width / 2)));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -292,17 +349,15 @@ quantum_print_expn(quantum_reg reg)
|
||||
void
|
||||
quantum_addscratch(int bits, quantum_reg *reg)
|
||||
{
|
||||
int i, oldwidth;
|
||||
int i;
|
||||
MAX_UNSIGNED l;
|
||||
|
||||
oldwidth = reg->width;
|
||||
|
||||
reg->width += bits;
|
||||
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
l = reg->node[i].state << bits;
|
||||
reg->node[i].state = l;
|
||||
l = reg->state[i] << bits;
|
||||
reg->state[i] = l;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -318,7 +373,7 @@ quantum_print_hash(quantum_reg reg)
|
||||
{
|
||||
if(i)
|
||||
printf("%i: %i %llu\n", i, reg.hash[i]-1,
|
||||
reg.node[reg.hash[i]-1].state);
|
||||
reg.state[reg.hash[i]-1]);
|
||||
}
|
||||
|
||||
}
|
||||
@@ -335,15 +390,15 @@ quantum_kronecker(quantum_reg *reg1, quantum_reg *reg2)
|
||||
reg.size = reg1->size*reg2->size;
|
||||
reg.hashw = reg.width + 2;
|
||||
|
||||
|
||||
/* allocate memory for the new basis states */
|
||||
|
||||
reg.node = calloc(reg.size, sizeof(quantum_reg_node));
|
||||
if(!reg.node)
|
||||
reg.amplitude = calloc(reg.size, sizeof(COMPLEX_FLOAT));
|
||||
reg.state = calloc(reg.size, sizeof(MAX_UNSIGNED));
|
||||
|
||||
if(!(reg.state && reg.amplitude))
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman((reg.size)*sizeof(quantum_reg_node));
|
||||
|
||||
quantum_memman(reg.size * (sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
|
||||
|
||||
/* Allocate the hash table */
|
||||
|
||||
@@ -356,14 +411,13 @@ quantum_kronecker(quantum_reg *reg1, quantum_reg *reg2)
|
||||
for(i=0; i<reg1->size; i++)
|
||||
for(j=0; j<reg2->size; j++)
|
||||
{
|
||||
/* printf("processing |%lli> x |%lli>\n", reg1->node[i].state,
|
||||
reg2->node[j].state);
|
||||
printf("%lli\n", (reg1->node[i].state) << reg2->width); */
|
||||
/* printf("processing |%lli> x |%lli>\n", reg1->state[i],
|
||||
reg2->state[j]);
|
||||
printf("%lli\n", (reg1->state[i]) << reg2->width); */
|
||||
|
||||
reg.node[i*reg2->size+j].state = ((reg1->node[i].state) << reg2->width)
|
||||
| reg2->node[j].state;
|
||||
reg.node[i*reg2->size+j].amplitude =
|
||||
reg1->node[i].amplitude * reg2->node[j].amplitude;
|
||||
reg.state[i*reg2->size+j] = ((reg1->state[i]) << reg2->width)
|
||||
| reg2->state[j];
|
||||
reg.amplitude[i*reg2->size+j] = reg1->amplitude[i] * reg2->amplitude[j];
|
||||
}
|
||||
|
||||
return reg;
|
||||
@@ -387,10 +441,10 @@ quantum_state_collapse(int pos, int value, quantum_reg reg)
|
||||
|
||||
for(i=0;i<reg.size;i++)
|
||||
{
|
||||
if(((reg.node[i].state & pos2) && value)
|
||||
|| (!(reg.node[i].state & pos2) && !value))
|
||||
if(((reg.state[i] & pos2) && value)
|
||||
|| (!(reg.state[i] & pos2) && !value))
|
||||
{
|
||||
d += quantum_prob_inline(reg.node[i].amplitude);
|
||||
d += quantum_prob_inline(reg.amplitude[i]);
|
||||
size++;
|
||||
}
|
||||
}
|
||||
@@ -399,12 +453,13 @@ quantum_state_collapse(int pos, int value, quantum_reg reg)
|
||||
|
||||
out.width = reg.width-1;
|
||||
out.size = size;
|
||||
out.node = calloc(size, sizeof(quantum_reg_node));
|
||||
out.amplitude = calloc(size, sizeof(COMPLEX_FLOAT));
|
||||
out.state = calloc(size, sizeof(MAX_UNSIGNED));
|
||||
|
||||
if(!out.node)
|
||||
if(!(out.state && out.amplitude))
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(size * sizeof(quantum_reg_node));
|
||||
quantum_memman(size * (sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
|
||||
out.hashw = reg.hashw;
|
||||
out.hash = reg.hash;
|
||||
|
||||
@@ -413,21 +468,21 @@ quantum_state_collapse(int pos, int value, quantum_reg reg)
|
||||
|
||||
for(i=0, j=0; i<reg.size; i++)
|
||||
{
|
||||
if(((reg.node[i].state & pos2) && value)
|
||||
|| (!(reg.node[i].state & pos2) && !value))
|
||||
if(((reg.state[i] & pos2) && value)
|
||||
|| (!(reg.state[i] & pos2) && !value))
|
||||
{
|
||||
for(k=0, rpat=0; k<pos; k++)
|
||||
rpat += (MAX_UNSIGNED) 1 << k;
|
||||
|
||||
rpat &= reg.node[i].state;
|
||||
rpat &= reg.state[i];
|
||||
|
||||
for(k=sizeof(MAX_UNSIGNED)*8-1, lpat=0; k>pos; k--)
|
||||
lpat += (MAX_UNSIGNED) 1 << k;
|
||||
|
||||
lpat &= reg.node[i].state;
|
||||
lpat &= reg.state[i];
|
||||
|
||||
out.node[j].state = (lpat >> 1) | rpat;
|
||||
out.node[j].amplitude = reg.node[i].amplitude * 1 / (float) sqrt(d);
|
||||
out.state[j] = (lpat >> 1) | rpat;
|
||||
out.amplitude[j] = reg.amplitude[i] * 1 / (float) sqrt(d);
|
||||
|
||||
j++;
|
||||
}
|
||||
@@ -450,12 +505,26 @@ quantum_dot_product(quantum_reg *reg1, quantum_reg *reg2)
|
||||
if(reg2->hashw)
|
||||
quantum_reconstruct_hash(reg2);
|
||||
|
||||
for(i=0; i<reg1->size; i++)
|
||||
if(reg1->state)
|
||||
{
|
||||
j = quantum_get_state(reg1->node[i].state, *reg2);
|
||||
for(i=0; i<reg1->size; i++)
|
||||
{
|
||||
j = quantum_get_state(reg1->state[i], *reg2);
|
||||
|
||||
if(j > -1) /* state exists in reg2 */
|
||||
f += quantum_conj(reg1->node[i].amplitude) * reg2->node[j].amplitude;
|
||||
if(j > -1) /* state exists in reg2 */
|
||||
f += quantum_conj(reg1->amplitude[i]) * reg2->amplitude[j];
|
||||
}
|
||||
}
|
||||
|
||||
else
|
||||
{
|
||||
for(i=0; i<reg1->size; i++)
|
||||
{
|
||||
j = quantum_get_state(i, *reg2);
|
||||
|
||||
if(j > -1) /* state exists in reg2 */
|
||||
f += quantum_conj(reg1->amplitude[i]) * reg2->amplitude[j];
|
||||
}
|
||||
}
|
||||
|
||||
return f;
|
||||
@@ -475,13 +544,21 @@ quantum_dot_product_noconj(quantum_reg *reg1, quantum_reg *reg2)
|
||||
if(reg2->hashw)
|
||||
quantum_reconstruct_hash(reg2);
|
||||
|
||||
for(i=0; i<reg1->size; i++)
|
||||
if(!reg2->state)
|
||||
{
|
||||
j = quantum_get_state(reg1->node[i].state, *reg2);
|
||||
for(i=0; i<reg1->size; i++)
|
||||
f += reg1->amplitude[i] * reg2->amplitude[reg1->state[i]];
|
||||
}
|
||||
|
||||
if(j > -1) /* state exists in reg2 */
|
||||
f += reg1->node[i].amplitude * reg2->node[j].amplitude;
|
||||
else
|
||||
{
|
||||
for(i=0; i<reg1->size; i++)
|
||||
{
|
||||
j = quantum_get_state(reg1->state[i], *reg2);
|
||||
|
||||
if(j > -1) /* state exists in reg2 */
|
||||
f += reg1->amplitude[i] * reg2->amplitude[j];
|
||||
}
|
||||
}
|
||||
|
||||
return f;
|
||||
@@ -510,32 +587,47 @@ quantum_vectoradd(quantum_reg *reg1, quantum_reg *reg2)
|
||||
|
||||
for(i=0; i<reg2->size; i++)
|
||||
{
|
||||
if(quantum_get_state(reg2->node[i].state, *reg1) == -1)
|
||||
if(quantum_get_state(reg2->state[i], *reg1) == -1)
|
||||
addsize++;
|
||||
}
|
||||
}
|
||||
|
||||
reg.size += addsize;
|
||||
reg.node = realloc(reg.node, (reg.size)*sizeof(quantum_reg_node));
|
||||
if(!reg.node)
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
if(addsize)
|
||||
{
|
||||
reg.size += addsize;
|
||||
|
||||
quantum_memman(addsize*sizeof(quantum_reg_node));
|
||||
reg.amplitude = realloc(reg.amplitude, reg.size*sizeof(COMPLEX_FLOAT));
|
||||
reg.state = realloc(reg.state, reg.size*sizeof(MAX_UNSIGNED));
|
||||
|
||||
if(!(reg.state && reg.amplitude))
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(addsize * (sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
|
||||
}
|
||||
|
||||
k = reg1->size;
|
||||
|
||||
for(i=0; i<reg2->size; i++)
|
||||
if(!reg2->state)
|
||||
{
|
||||
j = quantum_get_state(reg2->node[i].state, *reg1);
|
||||
for(i=0; i<reg2->size; i++)
|
||||
reg.amplitude[i] += reg2->amplitude[i];
|
||||
}
|
||||
|
||||
if(j >= 0)
|
||||
reg.node[j].amplitude += reg2->node[i].amplitude;
|
||||
|
||||
else
|
||||
else
|
||||
{
|
||||
for(i=0; i<reg2->size; i++)
|
||||
{
|
||||
reg.node[k].state = reg2->node[i].state;
|
||||
reg.node[k].amplitude = reg2->node[i].amplitude;
|
||||
k++;
|
||||
j = quantum_get_state(reg2->state[i], *reg1);
|
||||
|
||||
if(j >= 0)
|
||||
reg.amplitude[j] += reg2->amplitude[i];
|
||||
|
||||
else
|
||||
{
|
||||
reg.state[k] = reg2->state[i];
|
||||
reg.amplitude[k] = reg2->amplitude[i];
|
||||
k++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -559,41 +651,55 @@ quantum_vectoradd_inplace(quantum_reg *reg1, quantum_reg *reg2)
|
||||
|
||||
for(i=0; i<reg2->size; i++)
|
||||
{
|
||||
if(quantum_get_state(reg2->node[i].state, *reg1) == -1)
|
||||
if(quantum_get_state(reg2->state[i], *reg1) == -1)
|
||||
addsize++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Allocate memory for basis states */
|
||||
if(addsize)
|
||||
{
|
||||
|
||||
reg1->node = realloc(reg1->node, (reg1->size+addsize)
|
||||
* sizeof(quantum_reg_node));
|
||||
/* Allocate memory for basis states */
|
||||
|
||||
if(!reg1->node)
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
reg1->amplitude = realloc(reg1->amplitude,
|
||||
(reg1->size+addsize)*sizeof(COMPLEX_FLOAT));
|
||||
reg1->state = realloc(reg1->state, (reg1->size+addsize)
|
||||
*sizeof(MAX_UNSIGNED));
|
||||
|
||||
quantum_memman(addsize*sizeof(quantum_reg_node));
|
||||
if(!(reg1->state && reg1->amplitude))
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
/* Allocate the hash table */
|
||||
quantum_memman(addsize * (sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
|
||||
|
||||
}
|
||||
|
||||
k = reg1->size;
|
||||
|
||||
for(i=0; i<reg2->size; i++)
|
||||
if(!reg2->state)
|
||||
{
|
||||
j = quantum_get_state(reg2->node[i].state, *reg1);
|
||||
|
||||
if(j >= 0)
|
||||
reg1->node[j].amplitude += reg2->node[i].amplitude;
|
||||
|
||||
else
|
||||
{
|
||||
reg1->node[k].state = reg2->node[i].state;
|
||||
reg1->node[k].amplitude = reg2->node[i].amplitude;
|
||||
k++;
|
||||
}
|
||||
for(i=0; i<reg2->size; i++)
|
||||
reg1->amplitude[i] += reg2->amplitude[i];
|
||||
}
|
||||
|
||||
reg1->size += addsize;
|
||||
else
|
||||
{
|
||||
for(i=0; i<reg2->size; i++)
|
||||
{
|
||||
j = quantum_get_state(reg2->state[i], *reg1);
|
||||
|
||||
if(j >= 0)
|
||||
reg1->amplitude[j] += reg2->amplitude[i];
|
||||
|
||||
else
|
||||
{
|
||||
reg1->state[k] = reg2->state[i];
|
||||
reg1->amplitude[k] = reg2->amplitude[i];
|
||||
k++;
|
||||
}
|
||||
}
|
||||
|
||||
reg1->size += addsize;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -607,31 +713,46 @@ quantum_reg
|
||||
quantum_matrix_qureg(quantum_reg A(MAX_UNSIGNED, double), double t,
|
||||
quantum_reg *reg, int flags)
|
||||
{
|
||||
MAX_UNSIGNED i;
|
||||
int i;
|
||||
quantum_reg reg2;
|
||||
quantum_reg tmp;
|
||||
|
||||
reg2.width = reg->width;
|
||||
reg2.size = 1 << reg2.width;
|
||||
reg2.size = reg->size;
|
||||
reg2.hashw = 0;
|
||||
reg2.hash = 0;
|
||||
|
||||
reg2.node = calloc(reg2.size, sizeof(quantum_reg_node));
|
||||
if(!reg2.node)
|
||||
reg2.amplitude = calloc(reg2.size, sizeof(COMPLEX_FLOAT));
|
||||
reg2.state = 0;
|
||||
|
||||
if(!reg2.amplitude)
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(reg2.size*sizeof(quantum_reg_node));
|
||||
quantum_memman(reg2.size * sizeof(COMPLEX_FLOAT));
|
||||
|
||||
for(i=0; i<(1<<reg->width); i++)
|
||||
if(reg->state)
|
||||
{
|
||||
reg2.node[i].state = i;
|
||||
reg2.state = calloc(reg2.size, sizeof(MAX_UNSIGNED));
|
||||
|
||||
if(!reg2.state)
|
||||
quantum_error(QUANTUM_ENOMEM);
|
||||
|
||||
quantum_memman(reg2.size * sizeof(MAX_UNSIGNED));
|
||||
}
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for private (tmp)
|
||||
#endif
|
||||
for(i=0; i<reg->size; i++)
|
||||
{
|
||||
if(reg2.state)
|
||||
reg2.state[i] = i;
|
||||
tmp = A(i, t);
|
||||
reg2.node[i].amplitude = quantum_dot_product_noconj(&tmp, reg);
|
||||
reg2.amplitude[i] = quantum_dot_product_noconj(&tmp, reg);
|
||||
if(!(flags & 1))
|
||||
quantum_delete_qureg(&tmp);
|
||||
}
|
||||
|
||||
|
||||
return reg2;
|
||||
|
||||
}
|
||||
@@ -645,9 +766,9 @@ quantum_mvmult(quantum_reg *y, quantum_matrix A, quantum_reg *x)
|
||||
|
||||
for(i=0; i<A.cols; i++)
|
||||
{
|
||||
y->node[i].amplitude = 0;
|
||||
y->amplitude[i] = 0;
|
||||
for(j=0; j<A.cols; j++)
|
||||
y->node[i].amplitude += M(A, j, i)*x->node[j].amplitude;
|
||||
y->amplitude[i] += M(A, j, i)*x->amplitude[j];
|
||||
}
|
||||
}
|
||||
|
||||
@@ -662,7 +783,7 @@ quantum_scalar_qureg(COMPLEX_FLOAT r, quantum_reg *reg)
|
||||
int i;
|
||||
|
||||
for(i=0; i<reg->size; i++)
|
||||
reg->node[i].amplitude *= r;
|
||||
reg->amplitude[i] *= r;
|
||||
}
|
||||
|
||||
/* Print the time evolution matrix for a series of gates */
|
||||
@@ -681,7 +802,7 @@ quantum_print_timeop(int width, void f(quantum_reg *))
|
||||
tmp = quantum_new_qureg(i, width);
|
||||
f(&tmp);
|
||||
for(j=0; j<tmp.size; j++)
|
||||
M(m, tmp.node[j].state, i) = tmp.node[j].amplitude;
|
||||
M(m, tmp.state[j], i) = tmp.amplitude[j];
|
||||
|
||||
quantum_delete_qureg(&tmp);
|
||||
|
||||
@@ -692,3 +813,18 @@ quantum_print_timeop(int width, void f(quantum_reg *))
|
||||
quantum_delete_matrix(&m);
|
||||
|
||||
}
|
||||
|
||||
/* Normalize a quantum register */
|
||||
|
||||
void
|
||||
quantum_normalize(quantum_reg *reg)
|
||||
{
|
||||
int i;
|
||||
double r = 0;
|
||||
|
||||
for(i=0; i<reg->size; i++)
|
||||
r += quantum_prob(reg->amplitude[i]);
|
||||
|
||||
quantum_scalar_qureg(1./sqrt(r), reg);
|
||||
|
||||
}
|
||||
|
21
qureg.h
21
qureg.h
@@ -1,6 +1,6 @@
|
||||
/* qureg.h: Declarations for qureg.c and inline hashing functions
|
||||
|
||||
Copyright 2003, 2004 Bjoern Butscher, Hendrik Weimer
|
||||
Copyright 2003-2013 Bjoern Butscher, Hendrik Weimer
|
||||
|
||||
This file is part of libquantum
|
||||
|
||||
@@ -31,16 +31,6 @@
|
||||
#include "matrix.h"
|
||||
#include "error.h"
|
||||
|
||||
/* Representation of a base state of a quantum register: alpha_j |j> */
|
||||
|
||||
struct quantum_reg_node_struct
|
||||
{
|
||||
COMPLEX_FLOAT amplitude; /* alpha_j */
|
||||
MAX_UNSIGNED state; /* j */
|
||||
};
|
||||
|
||||
typedef struct quantum_reg_node_struct quantum_reg_node;
|
||||
|
||||
/* The quantum register */
|
||||
|
||||
struct quantum_reg_struct
|
||||
@@ -48,7 +38,8 @@ struct quantum_reg_struct
|
||||
int width; /* number of qubits in the qureg */
|
||||
int size; /* number of non-zero vectors */
|
||||
int hashw; /* width of the hash array */
|
||||
quantum_reg_node *node;
|
||||
COMPLEX_FLOAT *amplitude;
|
||||
MAX_UNSIGNED *state;
|
||||
int *hash;
|
||||
};
|
||||
|
||||
@@ -57,6 +48,7 @@ typedef struct quantum_reg_struct quantum_reg;
|
||||
extern quantum_reg quantum_matrix2qureg(quantum_matrix *m, int width);
|
||||
extern quantum_reg quantum_new_qureg(MAX_UNSIGNED initval, int width);
|
||||
extern quantum_reg quantum_new_qureg_size(int n, int width);
|
||||
extern quantum_reg quantum_new_qureg_sparse(int n, int width);
|
||||
extern quantum_matrix quantum_qureg2matrix(quantum_reg reg);
|
||||
extern void quantum_destroy_hash(quantum_reg *reg);
|
||||
extern void quantum_delete_qureg(quantum_reg *reg);
|
||||
@@ -84,6 +76,7 @@ extern void quantum_scalar_qureg(COMPLEX_FLOAT r, quantum_reg *reg);
|
||||
extern void quantum_mvmult(quantum_reg *y, quantum_matrix A, quantum_reg *x);
|
||||
|
||||
extern void quantum_print_timeop(int width, void f(quantum_reg *));
|
||||
extern void quantum_normalize(quantum_reg *reg);
|
||||
|
||||
/* Our 64-bit multiplicative hash function */
|
||||
|
||||
@@ -114,7 +107,7 @@ quantum_get_state(MAX_UNSIGNED a, quantum_reg reg)
|
||||
|
||||
while(reg.hash[i])
|
||||
{
|
||||
if(reg.node[reg.hash[i]-1].state == a)
|
||||
if(reg.state[reg.hash[i]-1] == a)
|
||||
return reg.hash[i]-1;
|
||||
i++;
|
||||
if(i == (1 << reg.hashw))
|
||||
@@ -168,7 +161,7 @@ quantum_reconstruct_hash(quantum_reg *reg)
|
||||
for(i=0; i<(1 << reg->hashw); i++)
|
||||
reg->hash[i] = 0;
|
||||
for(i=0; i<reg->size; i++)
|
||||
quantum_add_hash(reg->node[i].state, i, reg);
|
||||
quantum_add_hash(reg->state[i], i, reg);
|
||||
}
|
||||
|
||||
/* Return the reduced bitmask of a basis state */
|
||||
|
@@ -29,6 +29,10 @@
|
||||
#define COMPLEX_FLOAT @CF_TYPE@
|
||||
#endif
|
||||
|
||||
#ifndef REAL_FLOAT
|
||||
#define REAL_FLOAT @RF_TYPE@
|
||||
#endif
|
||||
|
||||
#ifndef MAX_UNSIGNED
|
||||
#define MAX_UNSIGNED @MU_TYPE@
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user