updated libquantum 1.1.1 source files

This commit is contained in:
libquantum
2016-10-27 04:32:19 +09:00
parent 701c63cdc4
commit 1a998a6b26
28 changed files with 4053 additions and 3995 deletions

View File

@@ -1,3 +1,12 @@
libquantum 1.1.1:
- Added support for ground state calculations
- Added example program simulating the tranverse Ising chain
- Optimized memory layout for quantum registers (thanks to
Acumem, breaks backward compatiblity)
- Added OpenMP support
- Improved C99 compatibility for complex numbers
- Improved support of double precision arithmetic
libquantum 1.1.0:
- Added exact diagonlization based on LAPACK
- Added flag in quantum_rk4 to preserve qureg (breaks backward

View File

@@ -48,8 +48,8 @@ LIBTOOL=@LIBTOOL@
# Flags passed to C compiler
CFLAGS=@CFLAGS@
LDFLAGS=-rpath $(LIBDIR) -version-info 7:0:0
CFLAGS=@CFLAGS@ @OPENMP_CFLAGS@
LDFLAGS=-rpath $(LIBDIR) -version-info 8:0:0
# Dependencies
@@ -57,11 +57,11 @@ all: libquantum.la
libquantum.la: complex.lo measure.lo matrix.lo gates.lo qft.lo classic.lo \
qureg.lo decoherence.lo oaddn.lo omuln.lo expn.lo qec.lo version.lo \
objcode.lo density.lo error.lo qtime.lo lapack.lo Makefile
objcode.lo density.lo error.lo qtime.lo lapack.lo energy.lo Makefile
$(LIBTOOL) --mode=link $(CC) $(LDFLAGS) -o libquantum.la complex.lo \
measure.lo matrix.lo gates.lo oaddn.lo omuln.lo expn.lo qft.lo \
classic.lo qureg.lo decoherence.lo qec.lo version.lo objcode.lo \
density.lo error.lo qtime.lo lapack.lo @LIBS@
density.lo error.lo qtime.lo lapack.lo energy.lo @LIBS@
complex.lo: complex.c complex.h config.h Makefile
$(LIBTOOL) --mode=compile $(CC) $(CFLAGS) -c complex.c
@@ -123,6 +123,9 @@ qtime.lo: qtime.c qtime.h qureg.h Makefile
lapack.lo: lapack.c lapack.h matrix.h qureg.h config.h error.h Makefile
$(LIBTOOL) --mode=compile $(CC) $(CFLAGS) -c lapack.c
energy.lo: energy.c energy.h qureg.h config.h error.h Makefile
$(LIBTOOL) --mode=compile $(CC) $(CFLAGS) -c energy.c
# Autoconf stuff
Makefile: config.status Makefile.in aclocal.m4 config.h.in types.h.in \
@@ -140,7 +143,7 @@ config.status: configure
# Build demos of Shor's and Grover's algorithms
demos: shor grover
demos: shor grover ising
shor: libquantum.la shor.c Makefile
$(LIBTOOL) --mode=link $(CC) $(CFLAGS) -o shor shor.c -I./ -lquantum \
@@ -150,6 +153,10 @@ grover: libquantum.la grover.c Makefile
$(LIBTOOL) --mode=link $(CC) $(CFLAGS) -o grover grover.c -I./ \
-lquantum -static -lm
ising: libquantum.la ising.c Makefile
$(LIBTOOL) --mode=link $(CC) $(CFLAGS) -o ising ising.c -I./ -lquantum \
-static -lm
# Quantum object code tools
quobtools: quobprint quobdump

View File

@@ -22,26 +22,27 @@
*/
#include <math.h>
#include <complex.h>
#include "complex.h"
#include "config.h"
/* Return the complex conjugate of a complex number */
COMPLEX_FLOAT
/*COMPLEX_FLOAT
quantum_conj(COMPLEX_FLOAT a)
{
float r, i;
REAL_FLOAT r, i;
r = quantum_real(a);
i = quantum_imag(a);
return r - IMAGINARY * i;
}
}*/
/* Calculate the square of a complex number (i.e. the probability) */
float
double
quantum_prob(COMPLEX_FLOAT a)
{
return quantum_prob_inline(a);
@@ -49,7 +50,7 @@ quantum_prob(COMPLEX_FLOAT a)
/* Calculate e^(i * phi) */
COMPLEX_FLOAT quantum_cexp(float phi)
COMPLEX_FLOAT quantum_cexp(REAL_FLOAT phi)
{
return cos(phi) + IMAGINARY * sin(phi);
}

View File

@@ -25,37 +25,22 @@
#define __COMPLEX_H
#include <complex.h>
#include "config.h"
extern COMPLEX_FLOAT quantum_conj(COMPLEX_FLOAT a);
#define quantum_conj(z) (conj(z))
#define quantum_real(z) (creal(z))
#define quantum_imag(z) (cimag(z))
extern float quantum_prob (COMPLEX_FLOAT a);
extern COMPLEX_FLOAT quantum_cexp(float phi);
/* Return the real part of a complex number */
static inline float
quantum_real(COMPLEX_FLOAT a)
{
float *p = (float *) &a;
return p[0];
}
/* Return the imaginary part of a complex number */
static inline float
quantum_imag(COMPLEX_FLOAT a)
{
float *p = (float *) &a;
return p[1];
}
extern double quantum_prob (COMPLEX_FLOAT a);
extern COMPLEX_FLOAT quantum_cexp(REAL_FLOAT phi);
/* Calculate the square of a complex number (i.e. the probability) */
static inline float
static inline double
quantum_prob_inline(COMPLEX_FLOAT a)
{
float r, i;
REAL_FLOAT r, i;
r = quantum_real(a);
i = quantum_imag(a);

View File

@@ -94,4 +94,7 @@
/* Define to 1 if you have LAPACK */
#undef HAVE_LIBLAPACK
/* Define to 1 if using double precision */
#undef USE_DOUBLE
#include "types.h"

6086
configure vendored

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,7 @@
# configure.in: Process this file with autoconf to produce a configure
# script.
#
# Copyright 2003-2005 Bjoern Butscher, Hendrik Weimer
# Copyright 2003-2013 Bjoern Butscher, Hendrik Weimer
#
# This file is part of libquantum
#
@@ -20,7 +20,7 @@
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
# MA 02110-1301, USA
AC_INIT([libquantum], [1.1.0], [libquantum@libquantum.de])
AC_INIT([libquantum], [1.1.1], [libquantum@libquantum.de])
AC_CONFIG_SRCDIR([classic.c])
AC_CONFIG_HEADER([config.h])
@@ -35,7 +35,7 @@ AC_PROG_LIBTOOL
# Checks for libraries.
AC_CHECK_LIB([m], [sqrt])
AC_ARG_WITH(lapack,
[ --with-lapack LAPACK support [default=yes]],
[ --with-lapack LAPACK support [[default=yes]]],
[if test $withval = "yes"
then
AC_CHECK_LIB([lapack], [cheev_])
@@ -75,11 +75,16 @@ fi
# Check for complex number type
AC_ARG_WITH([complex-type],
[ --with-complex-type=ARG type for complex numbers],
[CF_TYPE=$withval
], [CF_TYPE="none"
[CF_TYPE=$withval], [CF_TYPE="none"
AC_CHECK_TYPE([float complex], [AC_DEFINE([COMPLEX_FLOAT],
[float complex])
CF_TYPE="float complex"])])
if test "$CF_TYPE" = "none"
then
AC_CHECK_TYPE([float _Complex], [AC_DEFINE([COMPLEX_FLOAT],
[float _Complex])
CF_TYPE="float _Complex"])])
CF_TYPE="float _Complex"])
fi
if test "$CF_TYPE" = "none"
then
AC_CHECK_TYPE([__complex__ float], [AC_DEFINE([COMPLEX_FLOAT],
@@ -91,6 +96,14 @@ then
AC_MSG_ERROR([No complex number type!])
fi
AC_MSG_CHECKING([for corresponding real data type])
AC_RUN_IFELSE(
[AC_LANG_PROGRAM([], [return sizeof($CF_TYPE) == 2*sizeof(double)])],
[RF_TYPE="float"],
[RF_TYPE="double"; AC_DEFINE(USE_DOUBLE)], [float])
AC_MSG_RESULT($RF_TYPE)
# Check for the imaginary unit
AC_MSG_CHECKING([for the imaginary unit])
AC_ARG_WITH([imaginary],
@@ -108,9 +121,13 @@ then
fi
AC_MSG_RESULT($I)
# Check for OpenMP support
AC_OPENMP
# Substitute fields in quantum.h.in and types.h
AC_SUBST(MU_TYPE)
AC_SUBST(CF_TYPE)
AC_SUBST(RF_TYPE)
AC_SUBST(I)
# Profiling check
@@ -120,9 +137,6 @@ AC_ARG_ENABLE(profiling,
then CFLAGS="$CFLAGS -pg -fprofile-arcs -ftest-coverage"
fi], [])
# Disable LAPACK check
# Enable -Wall for gcc
if test $CC = "gcc"
then

View File

@@ -114,13 +114,13 @@ quantum_decohere(quantum_reg *reg)
for(j=0; j<reg->width; j++)
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << j))
if(reg->state[i] & ((MAX_UNSIGNED) 1 << j))
angle += nrands[j];
else
angle -= nrands[j];
}
reg->node[i].amplitude *= quantum_cexp(angle);
reg->amplitude[i] *= quantum_cexp(angle);
}
free(nrands);

View File

@@ -66,7 +66,8 @@ quantum_new_density_op(int num, float *prob, quantum_reg *reg)
reg[0].size = 0;
reg[0].width = 0;
reg[0].node = 0;
reg[0].state = 0;
reg[0].amplitude = 0;
reg[0].hash = 0;
for(i=1; i<num; i++)
@@ -78,7 +79,8 @@ quantum_new_density_op(int num, float *prob, quantum_reg *reg)
reg[i].size = 0;
reg[i].width = 0;
reg[i].node = 0;
reg[i].state = 0;
reg[i].amplitude = 0;
reg[i].hash = 0;
}
@@ -133,8 +135,8 @@ quantum_reduced_density_op(int pos, quantum_density_op *rho)
for(j=0; j<rho->reg[i].size; j++)
{
if(!(rho->reg[i].node[j].state & pos2))
p0 += quantum_prob_inline(rho->reg[i].node[j].amplitude);
if(!(rho->reg[i].state[j] & pos2))
p0 += quantum_prob_inline(rho->reg[i].amplitude[j]);
}
rho->prob[i] = ptmp * p0;
@@ -176,8 +178,8 @@ quantum_density_matrix(quantum_density_op *rho)
l1 = quantum_get_state(i, rho->reg[k]);
l2 = quantum_get_state(j, rho->reg[k]);
if((l1 > -1) && (l2 > -1))
M(m, i, j) += rho->prob[k] * rho->reg[k].node[l2].amplitude
* quantum_conj(rho->reg[k].node[l1].amplitude);
M(m, i, j) += rho->prob[k] * rho->reg[k].amplitude[l2]
* quantum_conj(rho->reg[k].amplitude[l1]);
}
}
}
@@ -246,14 +248,14 @@ quantum_purity(quantum_density_op *rho)
/* quantum_dot_product makes sure that rho->reg[j] has a
correct hash table */
l = quantum_get_state(rho->reg[i].node[k].state, rho->reg[j]);
l = quantum_get_state(rho->reg[i].state[k], rho->reg[j]);
/* Compute p_i p_j <k|\psi_iX\psi_i|\psi_jX\psi_j|k> */
if(l > -1)
g = rho->prob[i] * rho->prob[j] * dp
* rho->reg[i].node[k].amplitude
* quantum_conj(rho->reg[j].node[l].amplitude);
* rho->reg[i].amplitude[k]
* quantum_conj(rho->reg[j].amplitude[l]);
else
g = 0;

320
energy.c Normal file
View File

@@ -0,0 +1,320 @@
/* energy.c: Compute energetic properties of quantum systems
Copyright 2013 Hendrik Weimer
This file is part of libquantum
libquantum is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version.
libquantum is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with libquantum; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA
*/
#include <float.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "energy.h"
#include "qureg.h"
#include "qtime.h"
#include "complex.h"
extern void dstevd_(char *jobz, int *n, double *d, double *e, double *z,
int *ldz, double *work, int *lwork, int *iwork, int *liwork,
int *info);
/* Modified Lanczos algorithm that iterates over a series of 2x2
matrix diagonalzations [E. Dagotto & A. Moreo, Phys. Rev. D 31, 865
(1985)] */
double
quantum_lanczos_modified(quantum_reg H(MAX_UNSIGNED, double), double epsilon,
quantum_reg *reg)
{
double E0=DBL_MAX, Eold=DBL_MAX, E1, E2, t;
quantum_reg tmp, tmp2;
int i;
COMPLEX_FLOAT h01;
double h00, h11;
for(i=0; i<reg->size; i++)
{
quantum_normalize(reg);
tmp = quantum_matrix_qureg(H, 0, reg, QUANTUM_RK4_NODELETE);
h00 = quantum_real(quantum_dot_product(&tmp, reg));
E0 = h00;
if(fabs(E0-Eold)<epsilon)
return E0;
Eold = E0;
quantum_copy_qureg(reg, &tmp2);
quantum_scalar_qureg(-h00, &tmp2);
quantum_vectoradd_inplace(&tmp, &tmp2);
quantum_normalize(&tmp);
quantum_delete_qureg(&tmp2);
tmp2 = quantum_matrix_qureg(H, 0, &tmp, QUANTUM_RK4_NODELETE);
h11 = quantum_real(quantum_dot_product(&tmp2, &tmp));
h01 = quantum_dot_product(&tmp2, reg);
t = sqrt(h11*h11-2*h00*h11+4*h01*quantum_conj(h01)+h00*h00);
E1 = -(t-h11-h00)/2.;
E2 = (t+h11+h00)/2.;
if(E1<E2)
{
quantum_scalar_qureg(-(t-h11+h00)/2./h01, &tmp);
quantum_vectoradd_inplace(reg, &tmp);
}
else
{
quantum_scalar_qureg((t+h11-h00)/2./h01, &tmp);
quantum_vectoradd_inplace(reg, &tmp);
}
quantum_delete_qureg(&tmp);
quantum_delete_qureg(&tmp2);
}
quantum_error(QUANTUM_ENOCONVERGE);
return nan("0");
}
/* Standard Lanczos algorithm without reorthogonalization (see, e.g.,
[E. Dagotto, Rev. Mod. Phys. 66, 763 (1994)]. */
double
quantum_lanczos(quantum_reg H(MAX_UNSIGNED, double), double epsilon,
quantum_reg *reg)
{
#ifdef HAVE_LIBLAPACK
double E0=DBL_MAX, Eold=DBL_MAX, *a, *b, *d, *e, norm, *eig, *work;
quantum_reg *phi, tmp;
int n, i, j;
char jobz = 'V';
int lwork, *iwork, liwork, info;
phi = calloc(2, sizeof(quantum_reg));
a = calloc(2, sizeof(double));
b = calloc(2, sizeof(double));
work = malloc(sizeof(double));
iwork = malloc(sizeof(int));
eig = malloc(sizeof(double));
d = malloc(sizeof(double));
e = malloc(sizeof(double));
if(!(phi && a && b && work && iwork && eig && d && e))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(2*sizeof(quantum_reg)+4*sizeof(double));
quantum_copy_qureg(reg, &phi[0]);
quantum_normalize(&phi[0]);
tmp = quantum_matrix_qureg(H, 0, &phi[0], QUANTUM_RK4_NODELETE);
a[0] = quantum_dot_product(&tmp, &phi[0]);
quantum_copy_qureg(&phi[0], &phi[1]);
quantum_scalar_qureg(-a[0], &phi[1]);
quantum_vectoradd_inplace(&phi[1], &tmp);
quantum_delete_qureg(&tmp);
tmp = quantum_matrix_qureg(H, 0, &phi[1], QUANTUM_RK4_NODELETE);
norm = quantum_dot_product(&phi[1], &phi[1]);
a[1] = quantum_dot_product(&tmp, &phi[1]) / norm;
b[0] = norm / quantum_dot_product(&phi[0], &phi[0]);
for(n=2; n<reg->size; n++)
{
lwork = n*n+4*n+1;
work = realloc(work, lwork*sizeof(double));
liwork = 5*n+3;
iwork = realloc(iwork, lwork*sizeof(int));
eig = realloc(eig, n*n*sizeof(double));
d = realloc(d, n*sizeof(double));
e = realloc(e, n*sizeof(double));
if(!(work && iwork && eig && d && e))
quantum_error(QUANTUM_ENOMEM);
memcpy(d, a, n*sizeof(double));
for(i=0; i<n; i++)
e[i] = sqrt(b[i]);
dstevd_(&jobz, &n, d, e, eig, &n, work, &lwork, iwork, &liwork, &info);
if(info < 0)
quantum_error(QUANTUM_ELAPACKARG);
else if(info > 0)
quantum_error(QUANTUM_ELAPACKCONV);
E0 = d[0];
if(fabs(E0-Eold) < epsilon)
break;
Eold = E0;
phi = realloc(phi, (n+1)*sizeof(quantum_reg));
a = realloc(a, (n+1)*sizeof(double));
b = realloc(b, (n+1)*sizeof(double));
if(!(phi && a && b))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(sizeof(quantum_reg)+2*sizeof(double));
quantum_copy_qureg(&phi[n-1], &phi[n]);
quantum_scalar_qureg(-a[n-1], &phi[n]);
quantum_vectoradd_inplace(&phi[n], &tmp);
quantum_delete_qureg(&tmp);
quantum_copy_qureg(&phi[n-2], &tmp);
quantum_scalar_qureg(-b[n-2], &tmp);
quantum_vectoradd_inplace(&phi[n], &tmp);
/* printf("%i %f\n", n, quantum_prob(quantum_dot_product(&phi[n],
&phi[0]))); */
quantum_delete_qureg(&tmp);
tmp = quantum_matrix_qureg(H, 0, &phi[n], QUANTUM_RK4_NODELETE);
norm = quantum_dot_product(&phi[n], &phi[n]);
a[n] = quantum_dot_product(&tmp, &phi[n]) / norm;
b[n-1] = norm / quantum_dot_product(&phi[n-1], &phi[n-1]);
}
if(n == reg->size)
{
quantum_error(QUANTUM_ENOCONVERGE);
return nan("0");
}
for(i=0; i<n; i++)
quantum_normalize(&phi[i]);
for(i=0; i<reg->size; i++)
{
reg->amplitude[i] = 0;
for(j=0; j<n; j++)
reg->amplitude[i] += eig[j]*phi[j].amplitude[i];
}
quantum_delete_qureg(&tmp);
for(i=0; i<n; i++)
quantum_delete_qureg(&phi[i]);
free(phi);
free(a);
free(b);
free(d);
free(e);
free(eig);
free(work);
free(iwork);
return E0;
#else
quantum_error(QUANTUM_ENOLAPACK);
#endif /* HAVE_LIBLAPACK */
}
/* Imaginary time evolution algorithm */
double
quantum_imaginary_time(quantum_reg H(MAX_UNSIGNED, double), double epsilon,
double dt, quantum_reg *reg)
{
double E0=DBL_MAX, Eold=DBL_MAX;
quantum_reg reg2;
int i;
for(i=0; i<reg->size; i++)
{
quantum_rk4(reg, 0, dt, H, QUANTUM_RK4_IMAGINARY | QUANTUM_RK4_NODELETE);
reg2 = quantum_matrix_qureg(H, 0, reg, QUANTUM_RK4_NODELETE);
E0 = quantum_real(quantum_dot_product(&reg2, reg));
quantum_delete_qureg(&reg2);
if(fabs(Eold-E0)<epsilon)
break;
Eold = E0;
}
if(i == reg->size)
{
quantum_error(QUANTUM_ENOCONVERGE);
return nan("0");
}
else
return E0;
}
/* Wrapper around the various solver functions */
double
quantum_groundstate(quantum_reg *reg, double epsilon,
quantum_reg H(MAX_UNSIGNED, double), int solver,
double stepsize)
{
switch(solver)
{
case QUANTUM_SOLVER_LANCZOS:
return quantum_lanczos(H, epsilon, reg);
case QUANTUM_SOLVER_LANCZOS_MODIFIED:
return quantum_lanczos_modified(H, epsilon, reg);
case QUANTUM_SOLVER_IMAGINARY_TIME:
return quantum_imaginary_time(H, epsilon, stepsize, reg);
default:
quantum_error(QUANTUM_ENOSOLVER);
return nan("0");
}
}

41
energy.h Normal file
View File

@@ -0,0 +1,41 @@
/* energy.h: Declarations for energy.c
Copyright 2013 Hendrik Weimer
This file is part of libquantum
libquantum is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version.
libquantum is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with libquantum; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA
*/
#ifndef __ENERGY_H
#define __ENERGY_H
#include "config.h"
#include "qureg.h"
enum {
QUANTUM_SOLVER_LANCZOS,
QUANTUM_SOLVER_LANCZOS_MODIFIED,
QUANTUM_SOLVER_IMAGINARY_TIME
};
extern double quantum_groundstate(quantum_reg *reg, double epsilon,
quantum_reg H(MAX_UNSIGNED, double),
int solver, double stepsize);
#endif

View File

@@ -54,12 +54,16 @@ quantum_strerr(int errno)
return "wrong matrix size";
case QUANTUM_EHASHFULL:
return "hash table full";
case QUANTUM_EHERMITIAN:
return "matrix not Hermitian";
case QUANTUM_ENOCONVERGE:
return "method failed to converge";
case QUANTUM_ENOLAPACK:
return "LAPACK support not compiled in";
case QUANTUM_ELAPACKARG:
return "wrong arguments supplied to LAPACK";
case QUANTUM_ELAPACKCHEEV:
return "LAPACK's CHEEV failed to converge";
case QUANTUM_ELAPACKCONV:
return "LAPACK failed to converge";
case QUANTUM_EMCMATRIX:
return "single-column matrix expected";
case QUANTUM_EOPCODE:

View File

@@ -32,9 +32,12 @@ enum {
QUANTUM_EMLARGE = 3,
QUANTUM_EMSIZE = 4,
QUANTUM_EHASHFULL = 5,
QUANTUM_EHERMITIAN = 6,
QUANTUM_ENOCONVERGE = 7,
QUANTUM_ENOSOLVER = 8,
QUANTUM_ENOLAPACK = 32768, /* LAPACK errors start at 32768 */
QUANTUM_ELAPACKARG = 32769,
QUANTUM_ELAPACKCHEEV = 32770,
QUANTUM_ELAPACKCONV = 32770,
QUANTUM_EMCMATRIX = 65536, /* internal errors start at 65536 */
QUANTUM_EOPCODE = 65537
};

247
gates.c
View File

@@ -52,12 +52,15 @@ quantum_cnot(int control, int target, quantum_reg *reg)
if(quantum_objcode_put(CNOT, control, target))
return;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
/* Flip the target bit of a basis state if the control bit is set */
if((reg->node[i].state & ((MAX_UNSIGNED) 1 << control)))
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
if((reg->state[i] & ((MAX_UNSIGNED) 1 << control)))
reg->state[i] ^= ((MAX_UNSIGNED) 1 << target);
}
quantum_decohere(reg);
}
@@ -80,16 +83,19 @@ quantum_toffoli(int control1, int control2, int target, quantum_reg *reg)
if(quantum_objcode_put(TOFFOLI, control1, control2, target))
return;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
/* Flip the target bit of a basis state if both control bits are
set */
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control1))
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control1))
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control2))
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control2))
{
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
reg->state[i] ^= ((MAX_UNSIGNED) 1 << target);
}
}
}
@@ -126,13 +132,16 @@ quantum_unbounded_toffoli(int controlling, quantum_reg *reg, ...)
va_end(bits);
#ifdef _OPENMP
#pragma omp parallel for private (j)
#endif
for(i=0; i<reg->size; i++)
{
for(j=0; (j < controlling) &&
(reg->node[i].state & (MAX_UNSIGNED) 1 << controls[j]); j++);
(reg->state[i] & (MAX_UNSIGNED) 1 << controls[j]); j++);
if(j == controlling) /* all control bits are set */
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
reg->state[i] ^= ((MAX_UNSIGNED) 1 << target);
}
free(controls);
@@ -160,11 +169,14 @@ quantum_sigma_x(int target, quantum_reg *reg)
if(quantum_objcode_put(SIGMA_X, target))
return;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
/* Flip the target bit of each basis state */
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
reg->state[i] ^= ((MAX_UNSIGNED) 1 << target);
}
quantum_decohere(reg);
}
@@ -180,17 +192,20 @@ quantum_sigma_y(int target, quantum_reg *reg)
if(quantum_objcode_put(SIGMA_Y, target))
return;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size;i++)
{
/* Flip the target bit of each basis state and multiply with
+/- i */
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
reg->state[i] ^= ((MAX_UNSIGNED) 1 << target);
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
reg->node[i].amplitude *= IMAGINARY;
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
reg->amplitude[i] *= IMAGINARY;
else
reg->node[i].amplitude *= -IMAGINARY;
reg->amplitude[i] *= -IMAGINARY;
}
quantum_decohere(reg);
@@ -206,12 +221,15 @@ quantum_sigma_z(int target, quantum_reg *reg)
if(quantum_objcode_put(SIGMA_Z, target))
return;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
/* Multiply with -1 if the target bit is set */
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
reg->node[i].amplitude *= -1;
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
reg->amplitude[i] *= -1;
}
quantum_decohere(reg);
}
@@ -248,21 +266,21 @@ quantum_swaptheleads(int width, quantum_reg *reg)
/* calculate left bit pattern */
pat1 = reg->node[i].state % ((MAX_UNSIGNED) 1 << width);
pat1 = reg->state[i] % ((MAX_UNSIGNED) 1 << width);
/*calculate right but pattern */
pat2 = 0;
for(j=0; j<width; j++)
pat2 += reg->node[i].state & ((MAX_UNSIGNED) 1 << (width + j));
pat2 += reg->state[i] & ((MAX_UNSIGNED) 1 << (width + j));
/* construct the new basis state */
l = reg->node[i].state - (pat1 + pat2);
l = reg->state[i] - (pat1 + pat2);
l += (pat1 << width);
l += (pat2 >> width);
reg->node[i].state = l;
reg->state[i] = l;
}
}
}
@@ -307,26 +325,29 @@ quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
{
/* determine whether XORed basis state already exists */
if(quantum_get_state(reg->node[i].state
if(quantum_get_state(reg->state[i]
^ ((MAX_UNSIGNED) 1 << target), *reg) == -1)
addsize++;
}
/* allocate memory for the new basis states */
reg->node = realloc(reg->node,
(reg->size + addsize) * sizeof(quantum_reg_node));
reg->state = realloc(reg->state,
(reg->size + addsize) * sizeof(MAX_UNSIGNED));
reg->amplitude = realloc(reg->amplitude,
(reg->size + addsize) * sizeof(COMPLEX_FLOAT));
if(!reg->node)
if(reg->size && !(reg->state && reg->amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(addsize*sizeof(quantum_reg_node));
quantum_memman(addsize*(sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
for(i=0; i<addsize; i++)
{
reg->node[i+reg->size].state = 0;
reg->node[i+reg->size].amplitude = 0;
reg->state[i+reg->size] = 0;
reg->amplitude[i+reg->size] = 0;
}
}
done = calloc(reg->size + addsize, sizeof(char));
@@ -348,29 +369,29 @@ quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
{
/* determine if the target of the basis state is set */
iset = reg->node[i].state & ((MAX_UNSIGNED) 1 << target);
iset = reg->state[i] & ((MAX_UNSIGNED) 1 << target);
tnot = 0;
j = quantum_get_state(reg->node[i].state
j = quantum_get_state(reg->state[i]
^ ((MAX_UNSIGNED) 1<<target), *reg);
t = reg->node[i].amplitude;
if(j >= 0)
tnot = reg->node[j].amplitude;
tnot = reg->amplitude[j];
t = reg->amplitude[i];
if(iset)
reg->node[i].amplitude = m.t[2] * tnot + m.t[3] * t;
reg->amplitude[i] = m.t[2] * tnot + m.t[3] * t;
else
reg->node[i].amplitude = m.t[0] * t + m.t[1] * tnot;
reg->amplitude[i] = m.t[0] * t + m.t[1] * tnot;
if(j >= 0)
{
if(iset)
reg->node[j].amplitude = m.t[0] * tnot + m.t[1] * t;
reg->amplitude[j] = m.t[0] * tnot + m.t[1] * t;
else
reg->node[j].amplitude = m.t[2] * t + m.t[3] * tnot;
reg->amplitude[j] = m.t[2] * t + m.t[3] * tnot;
}
@@ -382,14 +403,14 @@ quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
if((m.t[2] == 0) && !(iset))
break;
reg->node[k].state = reg->node[i].state
reg->state[k] = reg->state[i]
^ ((MAX_UNSIGNED) 1 << target);
if(iset)
reg->node[k].amplitude = m.t[1] * t;
reg->amplitude[k] = m.t[1] * t;
else
reg->node[k].amplitude = m.t[2] * t;
reg->amplitude[k] = m.t[2] * t;
k++;
}
@@ -411,7 +432,7 @@ quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
{
for(i=0, j=0; i<reg->size; i++)
{
if(quantum_prob_inline(reg->node[i].amplitude) < limit)
if(quantum_prob_inline(reg->amplitude[i]) < limit)
{
j++;
decsize++;
@@ -419,23 +440,33 @@ quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
else if(j)
{
reg->node[i-j].state = reg->node[i].state;
reg->node[i-j].amplitude = reg->node[i].amplitude;
reg->state[i-j] = reg->state[i];
reg->amplitude[i-j] = reg->amplitude[i];
}
}
if(decsize)
{
reg->size -= decsize;
reg->node = realloc(reg->node, reg->size * sizeof(quantum_reg_node));
reg->amplitude = realloc(reg->amplitude,
reg->size * sizeof(COMPLEX_FLOAT));
reg->state = realloc(reg->state,
reg->size * sizeof(MAX_UNSIGNED));
if(!reg->node)
if(reg->size && !(reg->state && reg->amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(-decsize * sizeof(quantum_reg_node));
quantum_memman(-decsize * (sizeof(MAX_UNSIGNED)
+ sizeof(COMPLEX_FLOAT)));
}
}
if(reg->size > (1 << (reg->hashw-1)))
fprintf(stderr, "Warning: inefficient hash table (size %i vs hash %i)\n",
reg->size, 1<<reg->hashw);
quantum_decohere(reg);
}
@@ -464,34 +495,36 @@ quantum_gate2(int target1, int target2, quantum_matrix m, quantum_reg *reg)
reg->hash[i] = 0;
for(i=0; i<reg->size; i++)
quantum_add_hash(reg->node[i].state, i, reg);
quantum_add_hash(reg->state[i], i, reg);
/* calculate the number of basis states to be added */
for(i=0; i<reg->size; i++)
{
if(quantum_get_state(reg->node[i].state ^ ((MAX_UNSIGNED) 1 << target1),
if(quantum_get_state(reg->state[i] ^ ((MAX_UNSIGNED) 1 << target1),
*reg) == -1)
addsize++;
if(quantum_get_state(reg->node[i].state ^ ((MAX_UNSIGNED) 1 << target2),
if(quantum_get_state(reg->state[i] ^ ((MAX_UNSIGNED) 1 << target2),
*reg) == -1)
addsize++;
}
/* allocate memory for the new basis states */
reg->node = realloc(reg->node,
(reg->size + addsize) * sizeof(quantum_reg_node));
reg->state = realloc(reg->state,
(reg->size + addsize) * sizeof(MAX_UNSIGNED));
reg->amplitude = realloc(reg->amplitude,
(reg->size + addsize) * sizeof(COMPLEX_FLOAT));
if(!reg->node)
quantum_error(QUANTUM_EMSIZE);
if(reg->size && !(reg->state && reg->amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(addsize*sizeof(quantum_reg_node));
quantum_memman(addsize*(sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
for(i=0; i<addsize; i++)
{
reg->node[i+reg->size].state = 0;
reg->node[i+reg->size].amplitude = 0;
reg->state[i+reg->size] = 0;
reg->amplitude[i+reg->size] = 0;
}
done = calloc(reg->size + addsize, sizeof(char));
@@ -514,15 +547,15 @@ quantum_gate2(int target1, int target2, quantum_matrix m, quantum_reg *reg)
{
if(!done[i])
{
j = quantum_bitmask(reg->node[i].state, 2, bits);
j = quantum_bitmask(reg->state[i], 2, bits);
base[j] = i;
base[j ^ 1] = quantum_get_state(reg->node[i].state
base[j ^ 1] = quantum_get_state(reg->state[i]
^ ((MAX_UNSIGNED) 1 << target2),
*reg);
base[j ^ 2] = quantum_get_state(reg->node[i].state
base[j ^ 2] = quantum_get_state(reg->state[i]
^ ((MAX_UNSIGNED) 1 << target1),
*reg);
base[j ^ 3] = quantum_get_state(reg->node[i].state
base[j ^ 3] = quantum_get_state(reg->state[i]
^ ((MAX_UNSIGNED) 1 << target1)
^ ((MAX_UNSIGNED) 1 << target2),
*reg);
@@ -532,17 +565,17 @@ quantum_gate2(int target1, int target2, quantum_matrix m, quantum_reg *reg)
if(base[j] == -1)
{
base[j] = l;
// reg->node[l].state = reg->node[i].state
// reg->node[l].state = reg->state[i]
l++;
}
psi_sub[j] = reg->node[base[j]].amplitude;
psi_sub[j] = reg->amplitude[base[j]];
}
for(j=0; j<4; j++)
{
reg->node[base[j]].amplitude = 0;
reg->amplitude[base[j]] = 0;
for(k=0; k<4; k++)
reg->node[base[j]].amplitude += M(m, k, j) * psi_sub[k];
reg->amplitude[base[j]] += M(m, k, j) * psi_sub[k];
done[base[j]] = 1;
}
@@ -560,7 +593,7 @@ quantum_gate2(int target1, int target2, quantum_matrix m, quantum_reg *reg)
for(i=0, j=0; i<reg->size; i++)
{
if(quantum_prob_inline(reg->node[i].amplitude) < limit)
if(quantum_prob_inline(reg->amplitude[i]) < limit)
{
j++;
decsize++;
@@ -568,20 +601,26 @@ quantum_gate2(int target1, int target2, quantum_matrix m, quantum_reg *reg)
else if(j)
{
reg->node[i-j].state = reg->node[i].state;
reg->node[i-j].amplitude = reg->node[i].amplitude;
reg->state[i-j] = reg->state[i];
reg->amplitude[i-j] = reg->amplitude[i];
}
}
if(decsize)
{
reg->size -= decsize;
reg->node = realloc(reg->node, reg->size * sizeof(quantum_reg_node));
reg->amplitude = realloc(reg->amplitude,
reg->size * sizeof(COMPLEX_FLOAT));
reg->state = realloc(reg->state,
reg->size * sizeof(MAX_UNSIGNED));
if(!reg->node)
if(reg->size && !(reg->state && reg->amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(-decsize * sizeof(quantum_reg_node));
quantum_memman(-decsize * (sizeof(MAX_UNSIGNED)
+ sizeof(COMPLEX_FLOAT)));
}
quantum_decohere(reg);
@@ -677,10 +716,10 @@ quantum_r_z(int target, float gamma, quantum_reg *reg)
for(i=0; i<reg->size; i++)
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
reg->node[i].amplitude *= z;
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
reg->amplitude[i] *= z;
else
reg->node[i].amplitude /= z;
reg->amplitude[i] /= z;
}
quantum_decohere(reg);
@@ -699,9 +738,12 @@ quantum_phase_scale(int target, float gamma, quantum_reg *reg)
z = quantum_cexp(gamma);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
reg->node[i].amplitude *= z;
reg->amplitude[i] *= z;
}
quantum_decohere(reg);
@@ -721,10 +763,13 @@ quantum_phase_kick(int target, float gamma, quantum_reg *reg)
z = quantum_cexp(gamma);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
reg->node[i].amplitude *= z;
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
reg->amplitude[i] *= z;
}
quantum_decohere(reg);
@@ -743,12 +788,15 @@ quantum_cond_phase(int control, int target, quantum_reg *reg)
z = quantum_cexp(pi / ((MAX_UNSIGNED) 1 << (control - target)));
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control))
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control))
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
reg->node[i].amplitude *= z;
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
reg->amplitude[i] *= z;
}
}
@@ -764,12 +812,15 @@ quantum_cond_phase_inv(int control, int target, quantum_reg *reg)
z = quantum_cexp(-pi / ((MAX_UNSIGNED) 1 << (control - target)));
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control))
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control))
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
reg->node[i].amplitude *= z;
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
reg->amplitude[i] *= z;
}
}
@@ -788,17 +839,49 @@ quantum_cond_phase_kick(int control, int target, float gamma, quantum_reg *reg)
z = quantum_cexp(gamma);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control))
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control))
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
reg->node[i].amplitude *= z;
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
reg->amplitude[i] *= z;
}
}
quantum_decohere(reg);
}
void
quantum_cond_phase_shift(int control, int target, float gamma, quantum_reg *reg)
{
int i;
COMPLEX_FLOAT z;
if(quantum_objcode_put(COND_PHASE, control, target, (double) gamma))
return;
z = quantum_cexp(gamma/2);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control))
{
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
reg->amplitude[i] *= z;
else
reg->amplitude[i] /= z;
}
}
quantum_decohere(reg);
}
/* Increase the gate counter by INC steps or reset it if INC < 0. The
current value of the counter is returned. */

View File

@@ -145,6 +145,7 @@ int main(int argc, char **argv)
width = quantum_getwidth(N+1);
reg = quantum_new_qureg(0, width);
// reg.width--;
quantum_sigma_x(reg.width, &reg);
@@ -169,9 +170,9 @@ int main(int argc, char **argv)
for(i=0; i<reg.size; i++)
{
if(reg.node[i].state == N)
if(reg.state[i] == N)
printf("\nFound %i with a probability of %f\n\n", N,
quantum_prob(reg.node[i].amplitude));
quantum_prob(reg.amplitude[i]));
}
quantum_delete_qureg(&reg);

182
ising.c Normal file
View File

@@ -0,0 +1,182 @@
/* ising.c: Calculate the ground state of the transverse field Ising model
Copyright 2013 Bjoern Butscher, Hendrik Weimer
This file is part of libquantum
libquantum is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version.
libquantum is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with libquantum; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <quantum.h>
quantum_reg *hreg;
int N;
double g;
int *V;
quantum_reg H(MAX_UNSIGNED i, double t)
{
quantum_reg reg;
int j;
reg = quantum_new_qureg_sparse(N+1, N);
/* Transverse field part */
for(j=0; j<N; j++)
{
reg.state[j] = i^(1 << j);
reg.amplitude[j] = g;
}
reg.state[N] = i;
/* Interaction part */
reg.amplitude[N] = V[i];
return reg;
}
quantum_reg H2(MAX_UNSIGNED i, double t)
{
return hreg[i];
}
int main()
{
quantum_reg reg;
int i, j, k;
double E0, m, m2;
printf("# Ground state properties of the transverse Ising chain\n");
printf("# g: Transverse field in units of the Ising interaction\n");
printf("# N: Number of spins\n");
printf("# E_0: Ground state energy\n");
printf("# m: Spontaneous magnetization\n");
printf("# x: Spin susceptibility\n");
printf("# g\t\tN\tE_0\t\tm\t\tx\n");
for(N=8; N<=18; N+=2)
{
/* Precompute interaction energies */
V = calloc(1<<N, sizeof(int));
assert(V);
for(i=0; i<(1<<N); i++)
{
k = 0;
for(j=0; j<N-1; j++)
{
if(i & (1<<j))
{
if(i & (1<<(j+1)))
k--;
else
k++;
}
else
{
if(i & (1<<(j+1)))
k++;
else
k--;
}
}
/* Periodic boundary conditions */
if(i & (1<<(N-1)))
{
if(i & 1)
k--;
else
k++;
}
else
{
if(i & 1)
k++;
else
k--;
}
V[i] = k;
}
for(g=0.9; g<1.1; g+=0.01)
{
reg = quantum_new_qureg_size(1<<N, N);
for(i=0; i<(1<<N); i++)
reg.amplitude[i] = rand();
hreg = calloc(1<<N, sizeof(quantum_reg));
assert(hreg);
for(i=0; i<(1<<N); i++)
hreg[i] = H(i, 0);
E0 = quantum_groundstate(&reg, 1e-12, H2, QUANTUM_SOLVER_LANCZOS, 0);
m = 0;
m2 = 0;
for(i=0; i<(1<<N); i++)
{
k = 0;
for(j=0; j<N; j++)
{
if(i & (1<<j))
k--;
else
k++;
}
m += quantum_prob(reg.amplitude[i])*abs(k);
m2 += quantum_prob(reg.amplitude[i])*k*k;
}
m /= N;
m2 /= N;
printf("%f\t%i\t%f\t%f\t%f\n", g, N, E0, m, m2-m*m);
quantum_delete_qureg(&reg);
for(i=0; i<(1<<N); i++)
quantum_delete_qureg(&hreg[i]);
free(hreg);
}
free(V);
}
return 0;
}

View File

@@ -1,6 +1,6 @@
/* lapack.c: LAPACK interface
Copyright 2008 Bjoern Butscher, Hendrik Weimer
Copyright 2008-2013 Hendrik Weimer
This file is part of libquantum
@@ -22,6 +22,7 @@
*/
#include <stdlib.h>
#include <math.h>
#include "lapack.h"
#include "matrix.h"
@@ -34,10 +35,14 @@ extern void cheev_(char *jobz, char *uplo, int *n, float _Complex *A, int *lda,
float *w, float _Complex *work, int *lwork, float *rwork,
int *info);
extern void zheev_(char *jobz, char *uplo, int *n, double _Complex *A, int *lda,
double *w, double _Complex *work, int *lwork, double *rwork,
int *info);
void
quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
quantum_diag_time(double t, quantum_reg *reg0, quantum_reg *regt,
quantum_reg *tmp1, quantum_reg *tmp2, quantum_matrix H,
float **w)
REAL_FLOAT **w)
{
#ifdef HAVE_LIBLAPACK
char jobz = 'V';
@@ -45,32 +50,39 @@ quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
int dim = H.cols;
COMPLEX_FLOAT *work;
int lwork = -1;
float rwork[3*dim-2];
REAL_FLOAT rwork[3*dim-2];
int info;
int i;
int i, j;
void *p;
if(tmp2->size != reg0->size)
{
/* perform diagonalization */
p = regt->node;
for(i=0; i<dim; i++)
{
for(j=0; j<dim; j++)
{
if(sqrt(quantum_prob(M(H, i, j) - quantum_conj(M(H, j, i))))
> 1e-6)
quantum_error(QUANTUM_EHERMITIAN);
}
}
p = regt->amplitude;
*regt = *reg0;
regt->node = realloc(p, regt->size*sizeof(quantum_reg_node));
for(i=0; i<reg0->size; i++)
regt->node[i].state = i;
regt->amplitude = realloc(p, regt->size*sizeof(COMPLEX_FLOAT));
p = tmp1->node;
p = tmp1->amplitude;
*tmp1 = *reg0;
tmp1->node = realloc(p, regt->size*sizeof(quantum_reg_node));
for(i=0; i<reg0->size; i++)
tmp1->node[i].state = i;
tmp1->amplitude = realloc(p, regt->size*sizeof(COMPLEX_FLOAT));
p = tmp2->node;
p = tmp2->amplitude;
*tmp2 = *reg0;
tmp2->node = realloc(p, regt->size*sizeof(quantum_reg_node));
for(i=0; i<reg0->size; i++)
tmp2->node[i].state = i;
tmp2->amplitude = realloc(p, regt->size*sizeof(COMPLEX_FLOAT));
if(!(regt->amplitude && tmp1->amplitude && tmp2->amplitude))
quantum_error(QUANTUM_ENOMEM);
*w = malloc(dim*sizeof(float));
@@ -82,13 +94,14 @@ quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
if(!work)
quantum_error(QUANTUM_ENOMEM);
cheev_(&jobz, &uplo, &dim, H.t, &dim, *w, work, &lwork, rwork, &info);
QUANTUM_LAPACK_SOLVER(&jobz, &uplo, &dim, H.t, &dim, *w, work, &lwork,
rwork, &info);
if(info < 0)
quantum_error(QUANTUM_ELAPACKARG);
else if(info > 0)
quantum_error(QUANTUM_ELAPACKCHEEV);
quantum_error(QUANTUM_ELAPACKCONV);
lwork = (int) work[0];
work = realloc(work, lwork*sizeof(COMPLEX_FLOAT));
@@ -96,13 +109,14 @@ quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
if(!work)
quantum_error(QUANTUM_ENOMEM);
cheev_(&jobz, &uplo, &dim, H.t, &dim, *w, work, &lwork, rwork, &info);
QUANTUM_LAPACK_SOLVER(&jobz, &uplo, &dim, H.t, &dim, *w, work, &lwork,
rwork, &info);
if(info < 0)
quantum_error(QUANTUM_ELAPACKARG);
else if(info > 0)
quantum_error(QUANTUM_ELAPACKCHEEV);
quantum_error(QUANTUM_ELAPACKCONV);
free(work);
@@ -113,17 +127,13 @@ quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
if(tmp1->size != reg0->size)
{
p = regt->node;
p = regt->amplitude;
*regt = *reg0;
regt->node = realloc(p, regt->size*sizeof(quantum_reg_node));
for(i=0; i<reg0->size; i++)
regt->node[i].state = i;
regt->amplitude = realloc(p, regt->size*sizeof(COMPLEX_FLOAT));
p = tmp1->node;
p = tmp1->amplitude;
*tmp1 = *reg0;
tmp1->node = realloc(p, regt->size*sizeof(quantum_reg_node));
for(i=0; i<reg0->size; i++)
tmp1->node[i].state = i;
tmp1->amplitude = realloc(p, regt->size*sizeof(COMPLEX_FLOAT));
quantum_adjoint(&H);
@@ -133,7 +143,7 @@ quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
}
for(i=0; i<dim; i++)
tmp2->node[i].amplitude = quantum_cexp(-(*w)[i]*t)*tmp1->node[i].amplitude;
tmp2->amplitude[i] = quantum_cexp(-(*w)[i]*t)*tmp1->amplitude[i];
quantum_mvmult(regt, H, tmp2);

View File

@@ -1,6 +1,6 @@
/* time.c: Declarations for lapack.h
/* lapack.h: Declarations for lapack.c
Copyright 2006 Bjoern Butscher, Hendrik Weimer
Copyright 2006-2013 Hendrik Weimer
This file is part of libquantum
@@ -29,8 +29,14 @@
#include "matrix.h"
#include "qureg.h"
extern void quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
#ifdef USE_DOUBLE
#define QUANTUM_LAPACK_SOLVER zheev_
#else
#define QUANTUM_LAPACK_SOLVER cheev_
#endif
extern void quantum_diag_time(double t, quantum_reg *reg0, quantum_reg *regt,
quantum_reg *tmp1, quantum_reg *tmp2,
quantum_matrix H, float **w);
quantum_matrix H, REAL_FLOAT **w);
#endif

View File

@@ -89,8 +89,18 @@ void
quantum_print_matrix(quantum_matrix m)
{
int i, j, z=0;
int print_imag = 0;
/* int l; */
for(i=0; i<m.rows; i++)
{
for(j=0; j<m.cols; j++)
{
if(quantum_imag(M(m, j, i))/quantum_real(M(m, j, i)) > 1e-3)
print_imag = 1;
}
}
while ((1 << z++) < m.rows);
z--;
@@ -104,8 +114,15 @@ quantum_print_matrix(quantum_matrix m)
} */
for(j=0; j<m.cols; j++)
printf("%g %+gi ", quantum_real(M(m, j, i)),
{
if(print_imag)
printf("%3.3f%+.3fi ", quantum_real(M(m, j, i)),
quantum_imag(M(m, j, i)));
else
// printf("%3.3f ", quantum_real(M(m, j, i)));
printf("%+.1f ", quantum_real(M(m, j, i)));
}
printf("\n");
}
printf("\n");

View File

@@ -64,9 +64,9 @@ quantum_measure(quantum_reg reg)
given base state - r, return the base state as the
result. Otherwise, continue with the next base state. */
r -= quantum_prob_inline(reg.node[i].amplitude);
r -= quantum_prob_inline(reg.amplitude[i]);
if(0 >= r)
return reg.node[i].state;
return reg.state[i];
}
/* The sum of all probabilities is less than 1. Usually, the cause
@@ -100,8 +100,8 @@ quantum_bmeasure(int pos, quantum_reg *reg)
for(i=0; i<reg->size; i++)
{
if(!(reg->node[i].state & pos2))
pa += quantum_prob_inline(reg->node[i].amplitude);
if(!(reg->state[i] & pos2))
pa += quantum_prob_inline(reg->amplitude[i]);
}
/* Compare the probability for 0 with a random number and determine
@@ -141,8 +141,8 @@ quantum_bmeasure_bitpreserve(int pos, quantum_reg *reg)
for(i=0; i<reg->size; i++)
{
if(!(reg->node[i].state & pos2))
pa += quantum_prob_inline(reg->node[i].amplitude);
if(!(reg->state[i] & pos2))
pa += quantum_prob_inline(reg->amplitude[i]);
}
/* Compare the probability for 0 with a random number and determine
@@ -158,23 +158,23 @@ quantum_bmeasure_bitpreserve(int pos, quantum_reg *reg)
for(i=0;i<reg->size;i++)
{
if(reg->node[i].state & pos2)
if(reg->state[i] & pos2)
{
if(!result)
reg->node[i].amplitude = 0;
reg->amplitude[i] = 0;
else
{
d += quantum_prob_inline(reg->node[i].amplitude);
d += quantum_prob_inline(reg->amplitude[i]);
size++;
}
}
else
{
if(result)
reg->node[i].amplitude = 0;
reg->amplitude[i] = 0;
else
{
d += quantum_prob_inline(reg->node[i].amplitude);
d += quantum_prob_inline(reg->amplitude[i]);
size++;
}
}
@@ -183,12 +183,14 @@ quantum_bmeasure_bitpreserve(int pos, quantum_reg *reg)
/* Build the new quantum register */
out.size = size;
out.node = calloc(size, sizeof(quantum_reg_node));
out.state = calloc(size, sizeof(MAX_UNSIGNED));
out.amplitude = calloc(size, sizeof(COMPLEX_FLOAT));
if(!out.node)
if(!(out.state && out.amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(size * sizeof(quantum_reg_node));
quantum_memman(size * (sizeof(MAX_UNSIGNED) + sizeof(COMPLEX_FLOAT)));
out.hashw = reg->hashw;
out.hash = reg->hash;
out.width = reg->width;
@@ -198,10 +200,10 @@ quantum_bmeasure_bitpreserve(int pos, quantum_reg *reg)
for(i=0, j=0; i<reg->size; i++)
{
if(reg->node[i].amplitude)
if(reg->amplitude[i])
{
out.node[j].state = reg->node[i].state;
out.node[j].amplitude = reg->node[i].amplitude * 1 / (float) sqrt(d);
out.state[j] = reg->state[i];
out.amplitude[j] = reg->amplitude[i] * 1 / (float) sqrt(d);
j++;
}

View File

@@ -336,16 +336,30 @@ quantum_objcode_run(char *file, quantum_reg *reg)
switch(operation)
{
case INIT:
fread(buf, sizeof(MAX_UNSIGNED), 1, fhd);
if(!fread(buf, sizeof(MAX_UNSIGNED), 1, fhd))
{
quantum_error(QUANTUM_FAILURE);
break;
}
mu = quantum_char2mu(buf);
*reg = quantum_new_qureg(mu, 12);
break;
case CNOT:
case COND_PHASE:
fread(buf, sizeof(int), 1, fhd);
if(!fread(buf, sizeof(int), 1, fhd))
{
quantum_error(QUANTUM_FAILURE);
break;
}
j = quantum_char2int(buf);
fread(buf, sizeof(int), 1, fhd);
if(!fread(buf, sizeof(int), 1, fhd))
{
quantum_error(QUANTUM_FAILURE);
break;
}
k = quantum_char2int(buf);
switch(operation)
{
@@ -357,11 +371,23 @@ quantum_objcode_run(char *file, quantum_reg *reg)
break;
case TOFFOLI:
fread(buf, sizeof(int), 1, fhd);
if(!fread(buf, sizeof(int), 1, fhd))
{
quantum_error(QUANTUM_FAILURE);
break;
}
j = quantum_char2int(buf);
fread(buf, sizeof(int), 1, fhd);
if(!fread(buf, sizeof(int), 1, fhd))
{
quantum_error(QUANTUM_FAILURE);
break;
}
k = quantum_char2int(buf);
fread(buf, sizeof(int), 1, fhd);
if(!fread(buf, sizeof(int), 1, fhd))
{
quantum_error(QUANTUM_FAILURE);
break;
}
l = quantum_char2int(buf);
quantum_toffoli(j, k, l, reg);
break;
@@ -373,7 +399,11 @@ quantum_objcode_run(char *file, quantum_reg *reg)
case BMEASURE:
case BMEASURE_P:
case SWAPLEADS:
fread(buf, sizeof(int), 1, fhd);
if(!fread(buf, sizeof(int), 1, fhd))
{
quantum_error(QUANTUM_FAILURE);
break;
}
j = quantum_char2int(buf);
switch(operation)
{
@@ -399,9 +429,17 @@ quantum_objcode_run(char *file, quantum_reg *reg)
case ROT_Z:
case PHASE_KICK:
case PHASE_SCALE:
fread(buf, sizeof(int), 1, fhd);
if(!fread(buf, sizeof(int), 1, fhd))
{
quantum_error(QUANTUM_FAILURE);
break;
}
j = quantum_char2int(buf);
fread(buf, sizeof(double), 1, fhd);
if(!fread(buf, sizeof(double), 1, fhd))
{
quantum_error(QUANTUM_FAILURE);
break;
}
d = quantum_char2double(buf);
switch(operation)
{
@@ -419,11 +457,23 @@ quantum_objcode_run(char *file, quantum_reg *reg)
break;
case CPHASE_KICK:
fread(buf, sizeof(int), 1, fhd);
if(!fread(buf, sizeof(int), 1, fhd))
{
quantum_error(QUANTUM_FAILURE);
break;
}
j = quantum_char2int(buf);
fread(buf, sizeof(int), 1, fhd);
if(!fread(buf, sizeof(int), 1, fhd))
{
quantum_error(QUANTUM_FAILURE);
break;
}
k = quantum_char2int(buf);
fread(buf, sizeof(double), 1, fhd);
if(!fread(buf, sizeof(double), 1, fhd))
{
quantum_error(QUANTUM_FAILURE);
break;
}
d = quantum_char2double(buf);
quantum_cond_phase_kick(j, k, d, reg);
break;

14
qec.c
View File

@@ -243,34 +243,34 @@ quantum_toffoli_ft(int control1, int control2, int target, quantum_reg *reg)
c1 = 0;
c2 = 0;
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control1))
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control1))
c1 = 1;
if(reg->node[i].state
if(reg->state[i]
& ((MAX_UNSIGNED) 1 << (control1+width)))
{
c1 ^= 1;
}
if(reg->node[i].state
if(reg->state[i]
& ((MAX_UNSIGNED) 1 << (control1+2*width)))
{
c1 ^= 1;
}
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control2))
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control2))
c2 = 1;
if(reg->node[i].state
if(reg->state[i]
& ((MAX_UNSIGNED) 1 << (control2+width)))
{
c2 ^= 1;
}
if(reg->node[i].state
if(reg->state[i]
& ((MAX_UNSIGNED) 1 << (control2+2*width)))
{
c2 ^= 1;
}
if(c1 == 1 && c2 == 1)
reg->node[i].state = reg->node[i].state ^ mask;
reg->state[i] = reg->state[i] ^ mask;
}

53
qtime.c
View File

@@ -1,6 +1,6 @@
/* qtime.c: Time evolution of a quantum system
Copyright 2006,2007 Bjoern Butscher, Hendrik Weimer
Copyright 2006-2013 Hendrik Weimer
This file is part of libquantum
@@ -30,7 +30,10 @@
#include "complex.h"
#include "config.h"
/* Forth-order Runge-Kutta */
/* Forth-order Runge-Kutta
Flags: QUANTUM_RK4_NODELETE: Do not delete quantum_reg returned by H
QUANTUM_RK4_IMAGINARY: Imaginary time evolution */
void
quantum_rk4(quantum_reg *reg, double t, double dt,
@@ -41,6 +44,7 @@ quantum_rk4(quantum_reg *reg, double t, double dt,
int i;
void *hash;
int hashw;
COMPLEX_FLOAT step = dt;
hash = reg->hash;
reg->hash = 0;
@@ -48,36 +52,39 @@ quantum_rk4(quantum_reg *reg, double t, double dt,
hashw = reg->hashw;
reg->hashw = 0;
if(!(flags & QUANTUM_RK4_IMAGINARY))
step *= IMAGINARY;
/* k1 */
k = quantum_matrix_qureg(H, t, reg, flags);
quantum_scalar_qureg(-IMAGINARY*dt/2.0, &k);
k = quantum_matrix_qureg(H, t, reg, flags & QUANTUM_RK4_NODELETE);
quantum_scalar_qureg(-step/2.0, &k);
tmp = quantum_vectoradd(reg, &k);
quantum_scalar_qureg(1.0/3.0, &k);
out = quantum_vectoradd(reg, &k);
quantum_delete_qureg(&k);
/* k2 */
k = quantum_matrix_qureg(H, t+dt/2.0, &tmp, flags);
k = quantum_matrix_qureg(H, t+dt/2.0, &tmp, flags & QUANTUM_RK4_NODELETE);
quantum_delete_qureg(&tmp);
quantum_scalar_qureg(-IMAGINARY*dt/2.0, &k);
quantum_scalar_qureg(-step/2.0, &k);
tmp = quantum_vectoradd(reg, &k);
quantum_scalar_qureg(2.0/3.0, &k);
quantum_vectoradd_inplace(&out, &k);
quantum_delete_qureg(&k);
/* k3 */
k = quantum_matrix_qureg(H, t+dt/2.0, &tmp, flags);
k = quantum_matrix_qureg(H, t+dt/2.0, &tmp, flags & QUANTUM_RK4_NODELETE);
quantum_delete_qureg(&tmp);
quantum_scalar_qureg(-IMAGINARY*dt, &k);
quantum_scalar_qureg(-step, &k);
tmp = quantum_vectoradd(reg, &k);
quantum_scalar_qureg(1.0/3.0, &k);
quantum_vectoradd_inplace(&out, &k);
quantum_delete_qureg(&k);
/* k4 */
k = quantum_matrix_qureg(H, t+dt, &tmp, flags);
k = quantum_matrix_qureg(H, t+dt, &tmp, flags & QUANTUM_RK4_NODELETE);
quantum_delete_qureg(&tmp);
quantum_scalar_qureg(-IMAGINARY*dt/6.0, &k);
quantum_scalar_qureg(-step/6.0, &k);
quantum_vectoradd_inplace(&out, &k);
quantum_delete_qureg(&k);
@@ -85,10 +92,14 @@ quantum_rk4(quantum_reg *reg, double t, double dt,
/* Normalize quantum register */
for(i=0; i<out.size; i++)
r += quantum_prob(out.node[i].amplitude);
if(flags & QUANTUM_RK4_IMAGINARY)
{
// quantum_scalar_qureg(sqrt(1.0/r), &out);
for(i=0; i<out.size; i++)
r += quantum_prob(out.amplitude[i]);
quantum_scalar_qureg(sqrt(1.0/r), &out);
}
out.hash = hash;
out.hashw = hashw;
@@ -130,10 +141,8 @@ quantum_rk4a(quantum_reg *reg, double t, double *dt, double epsilon,
for(i=0;i<reg->size;i++)
{
r = 2*sqrt(quantum_prob(reg->node[i].amplitude
- reg2.node[i].amplitude)/
quantum_prob(reg->node[i].amplitude
+ reg2.node[i].amplitude));
r = 2*sqrt(quantum_prob(reg->amplitude[i] - reg2.amplitude[i])/
quantum_prob(reg->amplitude[i] + reg2.amplitude[i]));
if(r > delta)
delta = r;
@@ -155,8 +164,14 @@ quantum_rk4a(quantum_reg *reg, double t, double *dt, double epsilon,
if(delta > epsilon)
{
memcpy(reg->node, old.node, reg->size*sizeof(quantum_reg_node));
memcpy(reg2.node, old.node, reg->size*sizeof(quantum_reg_node));
memcpy(reg->amplitude, old.amplitude,
reg->size*sizeof(COMPLEX_FLOAT));
memcpy(reg2.amplitude, old.amplitude,
reg->size*sizeof(COMPLEX_FLOAT));
if(reg->state && old.state)
memcpy(reg->state, old.state, reg->size*sizeof(MAX_UNSIGNED));
if(reg2.state && old.state)
memcpy(reg2.state, old.state, reg->size*sizeof(MAX_UNSIGNED));
}
} while(delta > epsilon);

View File

@@ -1,6 +1,6 @@
/* qtime.h: Declarations for qtime.c
Copyright 2006,2007 Bjoern Butscher, Hendrik Weimer
Copyright 2006-2013 Hendrik Weimer
This file is part of libquantum
@@ -28,6 +28,11 @@
#include "qureg.h"
#include "config.h"
enum {
QUANTUM_RK4_NODELETE = 1,
QUANTUM_RK4_IMAGINARY = 2
};
extern void quantum_rk4(quantum_reg *reg, double t, double dt,
quantum_reg H(MAX_UNSIGNED, double), int flags);
extern double quantum_rk4a(quantum_reg *reg, double t, double *dt,

View File

@@ -1,6 +1,6 @@
/* quantum.h: Header file for libquantum
Copyright 2003-2008 Bjoern Butscher, Hendrik Weimer
Copyright 2003-2013 Bjoern Butscher, Hendrik Weimer
This file is part of libquantum
@@ -45,14 +45,6 @@ struct quantum_matrix_struct {
typedef struct quantum_matrix_struct quantum_matrix;
struct quantum_reg_node_struct
{
COMPLEX_FLOAT amplitude; /* alpha_j */
MAX_UNSIGNED state; /* j */
};
typedef struct quantum_reg_node_struct quantum_reg_node;
/* The quantum register */
struct quantum_reg_struct
@@ -60,7 +52,8 @@ struct quantum_reg_struct
int width; /* number of qubits in the qureg */
int size; /* number of non-zero vectors */
int hashw; /* width of the hash array */
quantum_reg_node *node;
COMPLEX_FLOAT *amplitude;
MAX_UNSIGNED *state;
int *hash;
};
@@ -75,8 +68,15 @@ struct quantum_density_op_struct
typedef struct quantum_density_op_struct quantum_density_op;
enum {
QUANTUM_SOLVER_LANCZOS,
QUANTUM_SOLVER_LANCZOS_MODIFIED,
QUANTUM_SOLVER_IMAGINARY_TIME
};
extern quantum_reg quantum_new_qureg(MAX_UNSIGNED initval, int width);
extern quantum_reg quantum_new_qureg_size(int n, int width);
extern quantum_reg quantum_new_qureg_sparse(int n, int width);
extern void quantum_delete_qureg(quantum_reg *reg);
extern void quantum_print_qureg(quantum_reg reg);
extern void quantum_addscratch(int bits, quantum_reg *reg);
@@ -103,6 +103,8 @@ extern void quantum_cond_phase(int control, int target, quantum_reg *reg);
extern void quantum_cond_phase_inv(int control, int target, quantum_reg *reg);
extern void quantum_cond_phase_kick(int control, int target, float gamma,
quantum_reg *reg);
extern void quantum_cond_phase_shift(int control, int target, float gamma,
quantum_reg *reg);
extern int quantum_gate_counter(int inc);
extern void quantum_qft(int width, quantum_reg *reg);
@@ -125,7 +127,7 @@ extern void quantum_cancel(int *a, int *b);
extern void quantum_frac_approx(int *a, int *b, int width);
extern int quantum_getwidth(int n);
extern float quantum_prob(COMPLEX_FLOAT a);
extern double quantum_prob(COMPLEX_FLOAT a);
extern float quantum_get_decoherence();
extern void quantum_set_decoherence(float lambda);
@@ -171,8 +173,13 @@ extern double quantum_rk4a(quantum_reg *reg, double t, double *dt,
double epsilon,
quantum_reg H(MAX_UNSIGNED, double), int flags);
extern void quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
extern void quantum_diag_time(double t, quantum_reg *reg0, quantum_reg *regt,
quantum_reg *tmp1, quantum_reg *tmp2,
quantum_matrix H, float **w);
quantum_matrix H, @RF_TYPE@ **w);
extern double quantum_groundstate(quantum_reg *reg, double epsilon,
quantum_reg H(MAX_UNSIGNED, double),
int solver, double stepsize);
#endif

342
qureg.c
View File

@@ -1,6 +1,6 @@
/* qureg.c: Quantum register management
Copyright 2003, 2004, 2006 Bjoern Butscher, Hendrik Weimer
Copyright 2003-2013 Bjoern Butscher, Hendrik Weimer
This file is part of libquantum
@@ -59,12 +59,13 @@ quantum_matrix2qureg(quantum_matrix *m, int width)
reg.size = size;
reg.hashw = width + 2;
reg.node = calloc(size, sizeof(quantum_reg_node));
reg.amplitude = calloc(size, sizeof(COMPLEX_FLOAT));
reg.state = calloc(size, sizeof(MAX_UNSIGNED));
if(!reg.node)
if(!(reg.state && reg.amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(size * sizeof(quantum_reg_node));
quantum_memman(size * (sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
/* Allocate the hash table */
@@ -82,8 +83,8 @@ quantum_matrix2qureg(quantum_matrix *m, int width)
{
if(m->t[i])
{
reg.node[j].state = i;
reg.node[j].amplitude = m->t[i];
reg.state[j] = i;
reg.amplitude[j] = m->t[i];
j++;
}
}
@@ -105,12 +106,13 @@ quantum_new_qureg(MAX_UNSIGNED initval, int width)
/* Allocate memory for 1 base state */
reg.node = calloc(1, sizeof(quantum_reg_node));
reg.state = calloc(1, sizeof(MAX_UNSIGNED));
reg.amplitude = calloc(1, sizeof(COMPLEX_FLOAT));
if(!reg.node)
if(!(reg.state && reg.amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(sizeof(quantum_reg_node));
quantum_memman(sizeof(MAX_UNSIGNED) + sizeof(COMPLEX_FLOAT));
/* Allocate the hash table */
@@ -123,8 +125,8 @@ quantum_new_qureg(MAX_UNSIGNED initval, int width)
/* Initialize the quantum register */
reg.node[0].state = initval;
reg.node[0].amplitude = 1;
reg.state[0] = initval;
reg.amplitude[0] = 1;
/* Initialize the PRNG */
@@ -158,12 +160,38 @@ quantum_new_qureg_size(int n, int width)
/* Allocate memory for n basis states */
reg.node = calloc(n, sizeof(quantum_reg_node));
reg.amplitude = calloc(n, sizeof(COMPLEX_FLOAT));
reg.state = 0;
if(!reg.node)
if(!reg.amplitude)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(n*sizeof(quantum_reg_node));
quantum_memman(n*sizeof(COMPLEX_FLOAT));
return reg;
}
/* Returns an empty sparse quantum register of size N */
quantum_reg
quantum_new_qureg_sparse(int n, int width)
{
quantum_reg reg;
reg.width = width;
reg.size = n;
reg.hashw = 0;
reg.hash = 0;
/* Allocate memory for n basis states */
reg.amplitude = calloc(n, sizeof(COMPLEX_FLOAT));
reg.state = calloc(n, sizeof(MAX_UNSIGNED));
if(!(reg.amplitude && reg.state))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(n*(sizeof(COMPLEX_FLOAT)+sizeof(MAX_UNSIGNED)));
return reg;
}
@@ -179,7 +207,7 @@ quantum_qureg2matrix(quantum_reg reg)
m = quantum_new_matrix(1, 1 << reg.width);
for(i=0; i<reg.size; i++)
m.t[reg.node[i].state] = reg.node[i].amplitude;
m.t[reg.state[i]] = reg.amplitude[i];
return m;
}
@@ -201,9 +229,18 @@ quantum_delete_qureg(quantum_reg *reg)
{
if(reg->hashw && reg->hash)
quantum_destroy_hash(reg);
free(reg->node);
quantum_memman(-reg->size * sizeof(quantum_reg_node));
reg->node = 0;
free(reg->amplitude);
quantum_memman(-reg->size * sizeof(COMPLEX_FLOAT));
reg->amplitude = 0;
if(reg->state)
{
free(reg->state);
quantum_memman(-reg->size * sizeof(MAX_UNSIGNED));
reg->state = 0;
}
}
/* Delete a quantum register but leave the hash table alive */
@@ -211,9 +248,16 @@ quantum_delete_qureg(quantum_reg *reg)
void
quantum_delete_qureg_hashpreserve(quantum_reg *reg)
{
free(reg->node);
quantum_memman(-reg->size * sizeof(quantum_reg_node));
reg->node = 0;
free(reg->amplitude);
quantum_memman(-reg->size * sizeof(COMPLEX_FLOAT));
reg->amplitude = 0;
if(reg->state)
{
free(reg->state);
quantum_memman(-reg->size * sizeof(MAX_UNSIGNED));
reg->state = 0;
}
}
/* Copy the contents of src to dst */
@@ -225,12 +269,27 @@ quantum_copy_qureg(quantum_reg *src, quantum_reg *dst)
/* Allocate memory for basis states */
dst->node = calloc(dst->size, sizeof(quantum_reg_node));
dst->amplitude = calloc(dst->size, sizeof(COMPLEX_FLOAT));
if(!dst->node)
if(!dst->amplitude)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(dst->size*sizeof(quantum_reg_node));
quantum_memman(dst->size*sizeof(COMPLEX_FLOAT));
memcpy(dst->amplitude, src->amplitude, src->size*sizeof(COMPLEX_FLOAT));
if(src->state)
{
dst->state = calloc(dst->size, sizeof(MAX_UNSIGNED));
if(!dst->state)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(dst->size*sizeof(MAX_UNSIGNED));
memcpy(dst->state, src->state, src->size*sizeof(MAX_UNSIGNED));
}
/* Allocate the hash table */
@@ -244,8 +303,6 @@ quantum_copy_qureg(quantum_reg *src, quantum_reg *dst)
quantum_memman((1 << dst->hashw) * sizeof(int));
}
memcpy(dst->node, src->node, src->size*sizeof(quantum_reg_node));
}
/* Print the contents of a quantum register to stdout */
@@ -257,14 +314,14 @@ quantum_print_qureg(quantum_reg reg)
for(i=0; i<reg.size; i++)
{
printf("% f %+fi|%lli> (%e) (|", quantum_real(reg.node[i].amplitude),
quantum_imag(reg.node[i].amplitude), reg.node[i].state,
quantum_prob_inline(reg.node[i].amplitude));
printf("% f %+fi|%lli> (%e) (|", quantum_real(reg.amplitude[i]),
quantum_imag(reg.amplitude[i]), reg.state[i],
quantum_prob_inline(reg.amplitude[i]));
for(j=reg.width-1;j>=0;j--)
{
if(j % 4 == 3)
printf(" ");
printf("%i", ((((MAX_UNSIGNED) 1 << j) & reg.node[i].state) > 0));
printf("%i", ((((MAX_UNSIGNED) 1 << j) & reg.state[i]) > 0));
}
printf(">)\n");
@@ -282,7 +339,7 @@ quantum_print_expn(quantum_reg reg)
for(i=0; i<reg.size; i++)
{
printf("%i: %lli\n", i, reg.node[i].state - i * (1 << (reg.width / 2)));
printf("%i: %lli\n", i, reg.state[i] - i * (1 << (reg.width / 2)));
}
}
@@ -292,17 +349,15 @@ quantum_print_expn(quantum_reg reg)
void
quantum_addscratch(int bits, quantum_reg *reg)
{
int i, oldwidth;
int i;
MAX_UNSIGNED l;
oldwidth = reg->width;
reg->width += bits;
for(i=0; i<reg->size; i++)
{
l = reg->node[i].state << bits;
reg->node[i].state = l;
l = reg->state[i] << bits;
reg->state[i] = l;
}
}
@@ -318,7 +373,7 @@ quantum_print_hash(quantum_reg reg)
{
if(i)
printf("%i: %i %llu\n", i, reg.hash[i]-1,
reg.node[reg.hash[i]-1].state);
reg.state[reg.hash[i]-1]);
}
}
@@ -335,15 +390,15 @@ quantum_kronecker(quantum_reg *reg1, quantum_reg *reg2)
reg.size = reg1->size*reg2->size;
reg.hashw = reg.width + 2;
/* allocate memory for the new basis states */
reg.node = calloc(reg.size, sizeof(quantum_reg_node));
if(!reg.node)
reg.amplitude = calloc(reg.size, sizeof(COMPLEX_FLOAT));
reg.state = calloc(reg.size, sizeof(MAX_UNSIGNED));
if(!(reg.state && reg.amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman((reg.size)*sizeof(quantum_reg_node));
quantum_memman(reg.size * (sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
/* Allocate the hash table */
@@ -356,14 +411,13 @@ quantum_kronecker(quantum_reg *reg1, quantum_reg *reg2)
for(i=0; i<reg1->size; i++)
for(j=0; j<reg2->size; j++)
{
/* printf("processing |%lli> x |%lli>\n", reg1->node[i].state,
reg2->node[j].state);
printf("%lli\n", (reg1->node[i].state) << reg2->width); */
/* printf("processing |%lli> x |%lli>\n", reg1->state[i],
reg2->state[j]);
printf("%lli\n", (reg1->state[i]) << reg2->width); */
reg.node[i*reg2->size+j].state = ((reg1->node[i].state) << reg2->width)
| reg2->node[j].state;
reg.node[i*reg2->size+j].amplitude =
reg1->node[i].amplitude * reg2->node[j].amplitude;
reg.state[i*reg2->size+j] = ((reg1->state[i]) << reg2->width)
| reg2->state[j];
reg.amplitude[i*reg2->size+j] = reg1->amplitude[i] * reg2->amplitude[j];
}
return reg;
@@ -387,10 +441,10 @@ quantum_state_collapse(int pos, int value, quantum_reg reg)
for(i=0;i<reg.size;i++)
{
if(((reg.node[i].state & pos2) && value)
|| (!(reg.node[i].state & pos2) && !value))
if(((reg.state[i] & pos2) && value)
|| (!(reg.state[i] & pos2) && !value))
{
d += quantum_prob_inline(reg.node[i].amplitude);
d += quantum_prob_inline(reg.amplitude[i]);
size++;
}
}
@@ -399,12 +453,13 @@ quantum_state_collapse(int pos, int value, quantum_reg reg)
out.width = reg.width-1;
out.size = size;
out.node = calloc(size, sizeof(quantum_reg_node));
out.amplitude = calloc(size, sizeof(COMPLEX_FLOAT));
out.state = calloc(size, sizeof(MAX_UNSIGNED));
if(!out.node)
if(!(out.state && out.amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(size * sizeof(quantum_reg_node));
quantum_memman(size * (sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
out.hashw = reg.hashw;
out.hash = reg.hash;
@@ -413,21 +468,21 @@ quantum_state_collapse(int pos, int value, quantum_reg reg)
for(i=0, j=0; i<reg.size; i++)
{
if(((reg.node[i].state & pos2) && value)
|| (!(reg.node[i].state & pos2) && !value))
if(((reg.state[i] & pos2) && value)
|| (!(reg.state[i] & pos2) && !value))
{
for(k=0, rpat=0; k<pos; k++)
rpat += (MAX_UNSIGNED) 1 << k;
rpat &= reg.node[i].state;
rpat &= reg.state[i];
for(k=sizeof(MAX_UNSIGNED)*8-1, lpat=0; k>pos; k--)
lpat += (MAX_UNSIGNED) 1 << k;
lpat &= reg.node[i].state;
lpat &= reg.state[i];
out.node[j].state = (lpat >> 1) | rpat;
out.node[j].amplitude = reg.node[i].amplitude * 1 / (float) sqrt(d);
out.state[j] = (lpat >> 1) | rpat;
out.amplitude[j] = reg.amplitude[i] * 1 / (float) sqrt(d);
j++;
}
@@ -450,12 +505,26 @@ quantum_dot_product(quantum_reg *reg1, quantum_reg *reg2)
if(reg2->hashw)
quantum_reconstruct_hash(reg2);
if(reg1->state)
{
for(i=0; i<reg1->size; i++)
{
j = quantum_get_state(reg1->node[i].state, *reg2);
j = quantum_get_state(reg1->state[i], *reg2);
if(j > -1) /* state exists in reg2 */
f += quantum_conj(reg1->node[i].amplitude) * reg2->node[j].amplitude;
f += quantum_conj(reg1->amplitude[i]) * reg2->amplitude[j];
}
}
else
{
for(i=0; i<reg1->size; i++)
{
j = quantum_get_state(i, *reg2);
if(j > -1) /* state exists in reg2 */
f += quantum_conj(reg1->amplitude[i]) * reg2->amplitude[j];
}
}
return f;
@@ -475,13 +544,21 @@ quantum_dot_product_noconj(quantum_reg *reg1, quantum_reg *reg2)
if(reg2->hashw)
quantum_reconstruct_hash(reg2);
if(!reg2->state)
{
for(i=0; i<reg1->size; i++)
f += reg1->amplitude[i] * reg2->amplitude[reg1->state[i]];
}
else
{
for(i=0; i<reg1->size; i++)
{
j = quantum_get_state(reg1->node[i].state, *reg2);
j = quantum_get_state(reg1->state[i], *reg2);
if(j > -1) /* state exists in reg2 */
f += reg1->node[i].amplitude * reg2->node[j].amplitude;
f += reg1->amplitude[i] * reg2->amplitude[j];
}
}
return f;
@@ -510,34 +587,49 @@ quantum_vectoradd(quantum_reg *reg1, quantum_reg *reg2)
for(i=0; i<reg2->size; i++)
{
if(quantum_get_state(reg2->node[i].state, *reg1) == -1)
if(quantum_get_state(reg2->state[i], *reg1) == -1)
addsize++;
}
}
if(addsize)
{
reg.size += addsize;
reg.node = realloc(reg.node, (reg.size)*sizeof(quantum_reg_node));
if(!reg.node)
reg.amplitude = realloc(reg.amplitude, reg.size*sizeof(COMPLEX_FLOAT));
reg.state = realloc(reg.state, reg.size*sizeof(MAX_UNSIGNED));
if(!(reg.state && reg.amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(addsize*sizeof(quantum_reg_node));
quantum_memman(addsize * (sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
}
k = reg1->size;
for(i=0; i<reg2->size; i++)
if(!reg2->state)
{
j = quantum_get_state(reg2->node[i].state, *reg1);
if(j >= 0)
reg.node[j].amplitude += reg2->node[i].amplitude;
for(i=0; i<reg2->size; i++)
reg.amplitude[i] += reg2->amplitude[i];
}
else
{
reg.node[k].state = reg2->node[i].state;
reg.node[k].amplitude = reg2->node[i].amplitude;
for(i=0; i<reg2->size; i++)
{
j = quantum_get_state(reg2->state[i], *reg1);
if(j >= 0)
reg.amplitude[j] += reg2->amplitude[i];
else
{
reg.state[k] = reg2->state[i];
reg.amplitude[k] = reg2->amplitude[i];
k++;
}
}
}
return reg;
@@ -559,41 +651,55 @@ quantum_vectoradd_inplace(quantum_reg *reg1, quantum_reg *reg2)
for(i=0; i<reg2->size; i++)
{
if(quantum_get_state(reg2->node[i].state, *reg1) == -1)
if(quantum_get_state(reg2->state[i], *reg1) == -1)
addsize++;
}
}
if(addsize)
{
/* Allocate memory for basis states */
reg1->node = realloc(reg1->node, (reg1->size+addsize)
* sizeof(quantum_reg_node));
reg1->amplitude = realloc(reg1->amplitude,
(reg1->size+addsize)*sizeof(COMPLEX_FLOAT));
reg1->state = realloc(reg1->state, (reg1->size+addsize)
*sizeof(MAX_UNSIGNED));
if(!reg1->node)
if(!(reg1->state && reg1->amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(addsize*sizeof(quantum_reg_node));
quantum_memman(addsize * (sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
/* Allocate the hash table */
}
k = reg1->size;
for(i=0; i<reg2->size; i++)
if(!reg2->state)
{
j = quantum_get_state(reg2->node[i].state, *reg1);
if(j >= 0)
reg1->node[j].amplitude += reg2->node[i].amplitude;
for(i=0; i<reg2->size; i++)
reg1->amplitude[i] += reg2->amplitude[i];
}
else
{
reg1->node[k].state = reg2->node[i].state;
reg1->node[k].amplitude = reg2->node[i].amplitude;
for(i=0; i<reg2->size; i++)
{
j = quantum_get_state(reg2->state[i], *reg1);
if(j >= 0)
reg1->amplitude[j] += reg2->amplitude[i];
else
{
reg1->state[k] = reg2->state[i];
reg1->amplitude[k] = reg2->amplitude[i];
k++;
}
}
reg1->size += addsize;
}
}
@@ -607,31 +713,46 @@ quantum_reg
quantum_matrix_qureg(quantum_reg A(MAX_UNSIGNED, double), double t,
quantum_reg *reg, int flags)
{
MAX_UNSIGNED i;
int i;
quantum_reg reg2;
quantum_reg tmp;
reg2.width = reg->width;
reg2.size = 1 << reg2.width;
reg2.size = reg->size;
reg2.hashw = 0;
reg2.hash = 0;
reg2.node = calloc(reg2.size, sizeof(quantum_reg_node));
if(!reg2.node)
reg2.amplitude = calloc(reg2.size, sizeof(COMPLEX_FLOAT));
reg2.state = 0;
if(!reg2.amplitude)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(reg2.size*sizeof(quantum_reg_node));
quantum_memman(reg2.size * sizeof(COMPLEX_FLOAT));
for(i=0; i<(1<<reg->width); i++)
if(reg->state)
{
reg2.node[i].state = i;
reg2.state = calloc(reg2.size, sizeof(MAX_UNSIGNED));
if(!reg2.state)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(reg2.size * sizeof(MAX_UNSIGNED));
}
#ifdef _OPENMP
#pragma omp parallel for private (tmp)
#endif
for(i=0; i<reg->size; i++)
{
if(reg2.state)
reg2.state[i] = i;
tmp = A(i, t);
reg2.node[i].amplitude = quantum_dot_product_noconj(&tmp, reg);
reg2.amplitude[i] = quantum_dot_product_noconj(&tmp, reg);
if(!(flags & 1))
quantum_delete_qureg(&tmp);
}
return reg2;
}
@@ -645,9 +766,9 @@ quantum_mvmult(quantum_reg *y, quantum_matrix A, quantum_reg *x)
for(i=0; i<A.cols; i++)
{
y->node[i].amplitude = 0;
y->amplitude[i] = 0;
for(j=0; j<A.cols; j++)
y->node[i].amplitude += M(A, j, i)*x->node[j].amplitude;
y->amplitude[i] += M(A, j, i)*x->amplitude[j];
}
}
@@ -662,7 +783,7 @@ quantum_scalar_qureg(COMPLEX_FLOAT r, quantum_reg *reg)
int i;
for(i=0; i<reg->size; i++)
reg->node[i].amplitude *= r;
reg->amplitude[i] *= r;
}
/* Print the time evolution matrix for a series of gates */
@@ -681,7 +802,7 @@ quantum_print_timeop(int width, void f(quantum_reg *))
tmp = quantum_new_qureg(i, width);
f(&tmp);
for(j=0; j<tmp.size; j++)
M(m, tmp.node[j].state, i) = tmp.node[j].amplitude;
M(m, tmp.state[j], i) = tmp.amplitude[j];
quantum_delete_qureg(&tmp);
@@ -692,3 +813,18 @@ quantum_print_timeop(int width, void f(quantum_reg *))
quantum_delete_matrix(&m);
}
/* Normalize a quantum register */
void
quantum_normalize(quantum_reg *reg)
{
int i;
double r = 0;
for(i=0; i<reg->size; i++)
r += quantum_prob(reg->amplitude[i]);
quantum_scalar_qureg(1./sqrt(r), reg);
}

21
qureg.h
View File

@@ -1,6 +1,6 @@
/* qureg.h: Declarations for qureg.c and inline hashing functions
Copyright 2003, 2004 Bjoern Butscher, Hendrik Weimer
Copyright 2003-2013 Bjoern Butscher, Hendrik Weimer
This file is part of libquantum
@@ -31,16 +31,6 @@
#include "matrix.h"
#include "error.h"
/* Representation of a base state of a quantum register: alpha_j |j> */
struct quantum_reg_node_struct
{
COMPLEX_FLOAT amplitude; /* alpha_j */
MAX_UNSIGNED state; /* j */
};
typedef struct quantum_reg_node_struct quantum_reg_node;
/* The quantum register */
struct quantum_reg_struct
@@ -48,7 +38,8 @@ struct quantum_reg_struct
int width; /* number of qubits in the qureg */
int size; /* number of non-zero vectors */
int hashw; /* width of the hash array */
quantum_reg_node *node;
COMPLEX_FLOAT *amplitude;
MAX_UNSIGNED *state;
int *hash;
};
@@ -57,6 +48,7 @@ typedef struct quantum_reg_struct quantum_reg;
extern quantum_reg quantum_matrix2qureg(quantum_matrix *m, int width);
extern quantum_reg quantum_new_qureg(MAX_UNSIGNED initval, int width);
extern quantum_reg quantum_new_qureg_size(int n, int width);
extern quantum_reg quantum_new_qureg_sparse(int n, int width);
extern quantum_matrix quantum_qureg2matrix(quantum_reg reg);
extern void quantum_destroy_hash(quantum_reg *reg);
extern void quantum_delete_qureg(quantum_reg *reg);
@@ -84,6 +76,7 @@ extern void quantum_scalar_qureg(COMPLEX_FLOAT r, quantum_reg *reg);
extern void quantum_mvmult(quantum_reg *y, quantum_matrix A, quantum_reg *x);
extern void quantum_print_timeop(int width, void f(quantum_reg *));
extern void quantum_normalize(quantum_reg *reg);
/* Our 64-bit multiplicative hash function */
@@ -114,7 +107,7 @@ quantum_get_state(MAX_UNSIGNED a, quantum_reg reg)
while(reg.hash[i])
{
if(reg.node[reg.hash[i]-1].state == a)
if(reg.state[reg.hash[i]-1] == a)
return reg.hash[i]-1;
i++;
if(i == (1 << reg.hashw))
@@ -168,7 +161,7 @@ quantum_reconstruct_hash(quantum_reg *reg)
for(i=0; i<(1 << reg->hashw); i++)
reg->hash[i] = 0;
for(i=0; i<reg->size; i++)
quantum_add_hash(reg->node[i].state, i, reg);
quantum_add_hash(reg->state[i], i, reg);
}
/* Return the reduced bitmask of a basis state */

View File

@@ -29,6 +29,10 @@
#define COMPLEX_FLOAT @CF_TYPE@
#endif
#ifndef REAL_FLOAT
#define REAL_FLOAT @RF_TYPE@
#endif
#ifndef MAX_UNSIGNED
#define MAX_UNSIGNED @MU_TYPE@
#endif