updated libquantum 1.1.1 source files

This commit is contained in:
libquantum
2016-10-27 04:32:19 +09:00
parent 701c63cdc4
commit 1a998a6b26
28 changed files with 4053 additions and 3995 deletions

376
qureg.c
View File

@@ -1,6 +1,6 @@
/* qureg.c: Quantum register management
Copyright 2003, 2004, 2006 Bjoern Butscher, Hendrik Weimer
Copyright 2003-2013 Bjoern Butscher, Hendrik Weimer
This file is part of libquantum
@@ -59,12 +59,13 @@ quantum_matrix2qureg(quantum_matrix *m, int width)
reg.size = size;
reg.hashw = width + 2;
reg.node = calloc(size, sizeof(quantum_reg_node));
reg.amplitude = calloc(size, sizeof(COMPLEX_FLOAT));
reg.state = calloc(size, sizeof(MAX_UNSIGNED));
if(!reg.node)
if(!(reg.state && reg.amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(size * sizeof(quantum_reg_node));
quantum_memman(size * (sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
/* Allocate the hash table */
@@ -82,8 +83,8 @@ quantum_matrix2qureg(quantum_matrix *m, int width)
{
if(m->t[i])
{
reg.node[j].state = i;
reg.node[j].amplitude = m->t[i];
reg.state[j] = i;
reg.amplitude[j] = m->t[i];
j++;
}
}
@@ -105,12 +106,13 @@ quantum_new_qureg(MAX_UNSIGNED initval, int width)
/* Allocate memory for 1 base state */
reg.node = calloc(1, sizeof(quantum_reg_node));
reg.state = calloc(1, sizeof(MAX_UNSIGNED));
reg.amplitude = calloc(1, sizeof(COMPLEX_FLOAT));
if(!reg.node)
if(!(reg.state && reg.amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(sizeof(quantum_reg_node));
quantum_memman(sizeof(MAX_UNSIGNED) + sizeof(COMPLEX_FLOAT));
/* Allocate the hash table */
@@ -123,8 +125,8 @@ quantum_new_qureg(MAX_UNSIGNED initval, int width)
/* Initialize the quantum register */
reg.node[0].state = initval;
reg.node[0].amplitude = 1;
reg.state[0] = initval;
reg.amplitude[0] = 1;
/* Initialize the PRNG */
@@ -158,12 +160,38 @@ quantum_new_qureg_size(int n, int width)
/* Allocate memory for n basis states */
reg.node = calloc(n, sizeof(quantum_reg_node));
reg.amplitude = calloc(n, sizeof(COMPLEX_FLOAT));
reg.state = 0;
if(!reg.node)
if(!reg.amplitude)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(n*sizeof(quantum_reg_node));
quantum_memman(n*sizeof(COMPLEX_FLOAT));
return reg;
}
/* Returns an empty sparse quantum register of size N */
quantum_reg
quantum_new_qureg_sparse(int n, int width)
{
quantum_reg reg;
reg.width = width;
reg.size = n;
reg.hashw = 0;
reg.hash = 0;
/* Allocate memory for n basis states */
reg.amplitude = calloc(n, sizeof(COMPLEX_FLOAT));
reg.state = calloc(n, sizeof(MAX_UNSIGNED));
if(!(reg.amplitude && reg.state))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(n*(sizeof(COMPLEX_FLOAT)+sizeof(MAX_UNSIGNED)));
return reg;
}
@@ -179,7 +207,7 @@ quantum_qureg2matrix(quantum_reg reg)
m = quantum_new_matrix(1, 1 << reg.width);
for(i=0; i<reg.size; i++)
m.t[reg.node[i].state] = reg.node[i].amplitude;
m.t[reg.state[i]] = reg.amplitude[i];
return m;
}
@@ -201,9 +229,18 @@ quantum_delete_qureg(quantum_reg *reg)
{
if(reg->hashw && reg->hash)
quantum_destroy_hash(reg);
free(reg->node);
quantum_memman(-reg->size * sizeof(quantum_reg_node));
reg->node = 0;
free(reg->amplitude);
quantum_memman(-reg->size * sizeof(COMPLEX_FLOAT));
reg->amplitude = 0;
if(reg->state)
{
free(reg->state);
quantum_memman(-reg->size * sizeof(MAX_UNSIGNED));
reg->state = 0;
}
}
/* Delete a quantum register but leave the hash table alive */
@@ -211,9 +248,16 @@ quantum_delete_qureg(quantum_reg *reg)
void
quantum_delete_qureg_hashpreserve(quantum_reg *reg)
{
free(reg->node);
quantum_memman(-reg->size * sizeof(quantum_reg_node));
reg->node = 0;
free(reg->amplitude);
quantum_memman(-reg->size * sizeof(COMPLEX_FLOAT));
reg->amplitude = 0;
if(reg->state)
{
free(reg->state);
quantum_memman(-reg->size * sizeof(MAX_UNSIGNED));
reg->state = 0;
}
}
/* Copy the contents of src to dst */
@@ -225,12 +269,27 @@ quantum_copy_qureg(quantum_reg *src, quantum_reg *dst)
/* Allocate memory for basis states */
dst->node = calloc(dst->size, sizeof(quantum_reg_node));
dst->amplitude = calloc(dst->size, sizeof(COMPLEX_FLOAT));
if(!dst->node)
if(!dst->amplitude)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(dst->size*sizeof(quantum_reg_node));
quantum_memman(dst->size*sizeof(COMPLEX_FLOAT));
memcpy(dst->amplitude, src->amplitude, src->size*sizeof(COMPLEX_FLOAT));
if(src->state)
{
dst->state = calloc(dst->size, sizeof(MAX_UNSIGNED));
if(!dst->state)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(dst->size*sizeof(MAX_UNSIGNED));
memcpy(dst->state, src->state, src->size*sizeof(MAX_UNSIGNED));
}
/* Allocate the hash table */
@@ -244,8 +303,6 @@ quantum_copy_qureg(quantum_reg *src, quantum_reg *dst)
quantum_memman((1 << dst->hashw) * sizeof(int));
}
memcpy(dst->node, src->node, src->size*sizeof(quantum_reg_node));
}
/* Print the contents of a quantum register to stdout */
@@ -257,14 +314,14 @@ quantum_print_qureg(quantum_reg reg)
for(i=0; i<reg.size; i++)
{
printf("% f %+fi|%lli> (%e) (|", quantum_real(reg.node[i].amplitude),
quantum_imag(reg.node[i].amplitude), reg.node[i].state,
quantum_prob_inline(reg.node[i].amplitude));
printf("% f %+fi|%lli> (%e) (|", quantum_real(reg.amplitude[i]),
quantum_imag(reg.amplitude[i]), reg.state[i],
quantum_prob_inline(reg.amplitude[i]));
for(j=reg.width-1;j>=0;j--)
{
if(j % 4 == 3)
printf(" ");
printf("%i", ((((MAX_UNSIGNED) 1 << j) & reg.node[i].state) > 0));
printf("%i", ((((MAX_UNSIGNED) 1 << j) & reg.state[i]) > 0));
}
printf(">)\n");
@@ -282,7 +339,7 @@ quantum_print_expn(quantum_reg reg)
for(i=0; i<reg.size; i++)
{
printf("%i: %lli\n", i, reg.node[i].state - i * (1 << (reg.width / 2)));
printf("%i: %lli\n", i, reg.state[i] - i * (1 << (reg.width / 2)));
}
}
@@ -292,17 +349,15 @@ quantum_print_expn(quantum_reg reg)
void
quantum_addscratch(int bits, quantum_reg *reg)
{
int i, oldwidth;
int i;
MAX_UNSIGNED l;
oldwidth = reg->width;
reg->width += bits;
for(i=0; i<reg->size; i++)
{
l = reg->node[i].state << bits;
reg->node[i].state = l;
l = reg->state[i] << bits;
reg->state[i] = l;
}
}
@@ -318,7 +373,7 @@ quantum_print_hash(quantum_reg reg)
{
if(i)
printf("%i: %i %llu\n", i, reg.hash[i]-1,
reg.node[reg.hash[i]-1].state);
reg.state[reg.hash[i]-1]);
}
}
@@ -335,15 +390,15 @@ quantum_kronecker(quantum_reg *reg1, quantum_reg *reg2)
reg.size = reg1->size*reg2->size;
reg.hashw = reg.width + 2;
/* allocate memory for the new basis states */
reg.node = calloc(reg.size, sizeof(quantum_reg_node));
if(!reg.node)
reg.amplitude = calloc(reg.size, sizeof(COMPLEX_FLOAT));
reg.state = calloc(reg.size, sizeof(MAX_UNSIGNED));
if(!(reg.state && reg.amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman((reg.size)*sizeof(quantum_reg_node));
quantum_memman(reg.size * (sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
/* Allocate the hash table */
@@ -356,14 +411,13 @@ quantum_kronecker(quantum_reg *reg1, quantum_reg *reg2)
for(i=0; i<reg1->size; i++)
for(j=0; j<reg2->size; j++)
{
/* printf("processing |%lli> x |%lli>\n", reg1->node[i].state,
reg2->node[j].state);
printf("%lli\n", (reg1->node[i].state) << reg2->width); */
/* printf("processing |%lli> x |%lli>\n", reg1->state[i],
reg2->state[j]);
printf("%lli\n", (reg1->state[i]) << reg2->width); */
reg.node[i*reg2->size+j].state = ((reg1->node[i].state) << reg2->width)
| reg2->node[j].state;
reg.node[i*reg2->size+j].amplitude =
reg1->node[i].amplitude * reg2->node[j].amplitude;
reg.state[i*reg2->size+j] = ((reg1->state[i]) << reg2->width)
| reg2->state[j];
reg.amplitude[i*reg2->size+j] = reg1->amplitude[i] * reg2->amplitude[j];
}
return reg;
@@ -387,10 +441,10 @@ quantum_state_collapse(int pos, int value, quantum_reg reg)
for(i=0;i<reg.size;i++)
{
if(((reg.node[i].state & pos2) && value)
|| (!(reg.node[i].state & pos2) && !value))
if(((reg.state[i] & pos2) && value)
|| (!(reg.state[i] & pos2) && !value))
{
d += quantum_prob_inline(reg.node[i].amplitude);
d += quantum_prob_inline(reg.amplitude[i]);
size++;
}
}
@@ -399,12 +453,13 @@ quantum_state_collapse(int pos, int value, quantum_reg reg)
out.width = reg.width-1;
out.size = size;
out.node = calloc(size, sizeof(quantum_reg_node));
out.amplitude = calloc(size, sizeof(COMPLEX_FLOAT));
out.state = calloc(size, sizeof(MAX_UNSIGNED));
if(!out.node)
if(!(out.state && out.amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(size * sizeof(quantum_reg_node));
quantum_memman(size * (sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
out.hashw = reg.hashw;
out.hash = reg.hash;
@@ -413,21 +468,21 @@ quantum_state_collapse(int pos, int value, quantum_reg reg)
for(i=0, j=0; i<reg.size; i++)
{
if(((reg.node[i].state & pos2) && value)
|| (!(reg.node[i].state & pos2) && !value))
if(((reg.state[i] & pos2) && value)
|| (!(reg.state[i] & pos2) && !value))
{
for(k=0, rpat=0; k<pos; k++)
rpat += (MAX_UNSIGNED) 1 << k;
rpat &= reg.node[i].state;
rpat &= reg.state[i];
for(k=sizeof(MAX_UNSIGNED)*8-1, lpat=0; k>pos; k--)
lpat += (MAX_UNSIGNED) 1 << k;
lpat &= reg.node[i].state;
lpat &= reg.state[i];
out.node[j].state = (lpat >> 1) | rpat;
out.node[j].amplitude = reg.node[i].amplitude * 1 / (float) sqrt(d);
out.state[j] = (lpat >> 1) | rpat;
out.amplitude[j] = reg.amplitude[i] * 1 / (float) sqrt(d);
j++;
}
@@ -450,14 +505,28 @@ quantum_dot_product(quantum_reg *reg1, quantum_reg *reg2)
if(reg2->hashw)
quantum_reconstruct_hash(reg2);
for(i=0; i<reg1->size; i++)
if(reg1->state)
{
j = quantum_get_state(reg1->node[i].state, *reg2);
for(i=0; i<reg1->size; i++)
{
j = quantum_get_state(reg1->state[i], *reg2);
if(j > -1) /* state exists in reg2 */
f += quantum_conj(reg1->node[i].amplitude) * reg2->node[j].amplitude;
if(j > -1) /* state exists in reg2 */
f += quantum_conj(reg1->amplitude[i]) * reg2->amplitude[j];
}
}
else
{
for(i=0; i<reg1->size; i++)
{
j = quantum_get_state(i, *reg2);
if(j > -1) /* state exists in reg2 */
f += quantum_conj(reg1->amplitude[i]) * reg2->amplitude[j];
}
}
return f;
}
@@ -475,13 +544,21 @@ quantum_dot_product_noconj(quantum_reg *reg1, quantum_reg *reg2)
if(reg2->hashw)
quantum_reconstruct_hash(reg2);
for(i=0; i<reg1->size; i++)
if(!reg2->state)
{
j = quantum_get_state(reg1->node[i].state, *reg2);
for(i=0; i<reg1->size; i++)
f += reg1->amplitude[i] * reg2->amplitude[reg1->state[i]];
}
if(j > -1) /* state exists in reg2 */
f += reg1->node[i].amplitude * reg2->node[j].amplitude;
else
{
for(i=0; i<reg1->size; i++)
{
j = quantum_get_state(reg1->state[i], *reg2);
if(j > -1) /* state exists in reg2 */
f += reg1->amplitude[i] * reg2->amplitude[j];
}
}
return f;
@@ -510,32 +587,47 @@ quantum_vectoradd(quantum_reg *reg1, quantum_reg *reg2)
for(i=0; i<reg2->size; i++)
{
if(quantum_get_state(reg2->node[i].state, *reg1) == -1)
if(quantum_get_state(reg2->state[i], *reg1) == -1)
addsize++;
}
}
reg.size += addsize;
reg.node = realloc(reg.node, (reg.size)*sizeof(quantum_reg_node));
if(!reg.node)
quantum_error(QUANTUM_ENOMEM);
if(addsize)
{
reg.size += addsize;
quantum_memman(addsize*sizeof(quantum_reg_node));
reg.amplitude = realloc(reg.amplitude, reg.size*sizeof(COMPLEX_FLOAT));
reg.state = realloc(reg.state, reg.size*sizeof(MAX_UNSIGNED));
if(!(reg.state && reg.amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(addsize * (sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
}
k = reg1->size;
for(i=0; i<reg2->size; i++)
if(!reg2->state)
{
j = quantum_get_state(reg2->node[i].state, *reg1);
for(i=0; i<reg2->size; i++)
reg.amplitude[i] += reg2->amplitude[i];
}
if(j >= 0)
reg.node[j].amplitude += reg2->node[i].amplitude;
else
else
{
for(i=0; i<reg2->size; i++)
{
reg.node[k].state = reg2->node[i].state;
reg.node[k].amplitude = reg2->node[i].amplitude;
k++;
j = quantum_get_state(reg2->state[i], *reg1);
if(j >= 0)
reg.amplitude[j] += reg2->amplitude[i];
else
{
reg.state[k] = reg2->state[i];
reg.amplitude[k] = reg2->amplitude[i];
k++;
}
}
}
@@ -559,41 +651,55 @@ quantum_vectoradd_inplace(quantum_reg *reg1, quantum_reg *reg2)
for(i=0; i<reg2->size; i++)
{
if(quantum_get_state(reg2->node[i].state, *reg1) == -1)
if(quantum_get_state(reg2->state[i], *reg1) == -1)
addsize++;
}
}
/* Allocate memory for basis states */
if(addsize)
{
reg1->node = realloc(reg1->node, (reg1->size+addsize)
* sizeof(quantum_reg_node));
/* Allocate memory for basis states */
if(!reg1->node)
quantum_error(QUANTUM_ENOMEM);
reg1->amplitude = realloc(reg1->amplitude,
(reg1->size+addsize)*sizeof(COMPLEX_FLOAT));
reg1->state = realloc(reg1->state, (reg1->size+addsize)
*sizeof(MAX_UNSIGNED));
quantum_memman(addsize*sizeof(quantum_reg_node));
if(!(reg1->state && reg1->amplitude))
quantum_error(QUANTUM_ENOMEM);
/* Allocate the hash table */
quantum_memman(addsize * (sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
}
k = reg1->size;
for(i=0; i<reg2->size; i++)
if(!reg2->state)
{
j = quantum_get_state(reg2->node[i].state, *reg1);
if(j >= 0)
reg1->node[j].amplitude += reg2->node[i].amplitude;
else
{
reg1->node[k].state = reg2->node[i].state;
reg1->node[k].amplitude = reg2->node[i].amplitude;
k++;
}
for(i=0; i<reg2->size; i++)
reg1->amplitude[i] += reg2->amplitude[i];
}
reg1->size += addsize;
else
{
for(i=0; i<reg2->size; i++)
{
j = quantum_get_state(reg2->state[i], *reg1);
if(j >= 0)
reg1->amplitude[j] += reg2->amplitude[i];
else
{
reg1->state[k] = reg2->state[i];
reg1->amplitude[k] = reg2->amplitude[i];
k++;
}
}
reg1->size += addsize;
}
}
@@ -607,30 +713,45 @@ quantum_reg
quantum_matrix_qureg(quantum_reg A(MAX_UNSIGNED, double), double t,
quantum_reg *reg, int flags)
{
MAX_UNSIGNED i;
int i;
quantum_reg reg2;
quantum_reg tmp;
reg2.width = reg->width;
reg2.size = 1 << reg2.width;
reg2.size = reg->size;
reg2.hashw = 0;
reg2.hash = 0;
reg2.node = calloc(reg2.size, sizeof(quantum_reg_node));
if(!reg2.node)
reg2.amplitude = calloc(reg2.size, sizeof(COMPLEX_FLOAT));
reg2.state = 0;
if(!reg2.amplitude)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(reg2.size*sizeof(quantum_reg_node));
quantum_memman(reg2.size * sizeof(COMPLEX_FLOAT));
for(i=0; i<(1<<reg->width); i++)
if(reg->state)
{
reg2.node[i].state = i;
reg2.state = calloc(reg2.size, sizeof(MAX_UNSIGNED));
if(!reg2.state)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(reg2.size * sizeof(MAX_UNSIGNED));
}
#ifdef _OPENMP
#pragma omp parallel for private (tmp)
#endif
for(i=0; i<reg->size; i++)
{
if(reg2.state)
reg2.state[i] = i;
tmp = A(i, t);
reg2.node[i].amplitude = quantum_dot_product_noconj(&tmp, reg);
reg2.amplitude[i] = quantum_dot_product_noconj(&tmp, reg);
if(!(flags & 1))
quantum_delete_qureg(&tmp);
}
return reg2;
@@ -645,9 +766,9 @@ quantum_mvmult(quantum_reg *y, quantum_matrix A, quantum_reg *x)
for(i=0; i<A.cols; i++)
{
y->node[i].amplitude = 0;
y->amplitude[i] = 0;
for(j=0; j<A.cols; j++)
y->node[i].amplitude += M(A, j, i)*x->node[j].amplitude;
y->amplitude[i] += M(A, j, i)*x->amplitude[j];
}
}
@@ -662,7 +783,7 @@ quantum_scalar_qureg(COMPLEX_FLOAT r, quantum_reg *reg)
int i;
for(i=0; i<reg->size; i++)
reg->node[i].amplitude *= r;
reg->amplitude[i] *= r;
}
/* Print the time evolution matrix for a series of gates */
@@ -681,7 +802,7 @@ quantum_print_timeop(int width, void f(quantum_reg *))
tmp = quantum_new_qureg(i, width);
f(&tmp);
for(j=0; j<tmp.size; j++)
M(m, tmp.node[j].state, i) = tmp.node[j].amplitude;
M(m, tmp.state[j], i) = tmp.amplitude[j];
quantum_delete_qureg(&tmp);
@@ -692,3 +813,18 @@ quantum_print_timeop(int width, void f(quantum_reg *))
quantum_delete_matrix(&m);
}
/* Normalize a quantum register */
void
quantum_normalize(quantum_reg *reg)
{
int i;
double r = 0;
for(i=0; i<reg->size; i++)
r += quantum_prob(reg->amplitude[i]);
quantum_scalar_qureg(1./sqrt(r), reg);
}