updated libquantum 1.1.1 source files

This commit is contained in:
libquantum
2016-10-27 04:32:19 +09:00
parent 701c63cdc4
commit 1a998a6b26
28 changed files with 4053 additions and 3995 deletions

View File

@@ -1,6 +1,6 @@
/* lapack.c: LAPACK interface
Copyright 2008 Bjoern Butscher, Hendrik Weimer
Copyright 2008-2013 Hendrik Weimer
This file is part of libquantum
@@ -22,6 +22,7 @@
*/
#include <stdlib.h>
#include <math.h>
#include "lapack.h"
#include "matrix.h"
@@ -34,10 +35,14 @@ extern void cheev_(char *jobz, char *uplo, int *n, float _Complex *A, int *lda,
float *w, float _Complex *work, int *lwork, float *rwork,
int *info);
extern void zheev_(char *jobz, char *uplo, int *n, double _Complex *A, int *lda,
double *w, double _Complex *work, int *lwork, double *rwork,
int *info);
void
quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
quantum_diag_time(double t, quantum_reg *reg0, quantum_reg *regt,
quantum_reg *tmp1, quantum_reg *tmp2, quantum_matrix H,
float **w)
REAL_FLOAT **w)
{
#ifdef HAVE_LIBLAPACK
char jobz = 'V';
@@ -45,32 +50,39 @@ quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
int dim = H.cols;
COMPLEX_FLOAT *work;
int lwork = -1;
float rwork[3*dim-2];
REAL_FLOAT rwork[3*dim-2];
int info;
int i;
int i, j;
void *p;
if(tmp2->size != reg0->size)
{
/* perform diagonalization */
p = regt->node;
*regt = *reg0;
regt->node = realloc(p, regt->size*sizeof(quantum_reg_node));
for(i=0; i<reg0->size; i++)
regt->node[i].state = i;
p = tmp1->node;
*tmp1 = *reg0;
tmp1->node = realloc(p, regt->size*sizeof(quantum_reg_node));
for(i=0; i<reg0->size; i++)
tmp1->node[i].state = i;
for(i=0; i<dim; i++)
{
for(j=0; j<dim; j++)
{
if(sqrt(quantum_prob(M(H, i, j) - quantum_conj(M(H, j, i))))
> 1e-6)
quantum_error(QUANTUM_EHERMITIAN);
}
}
p = tmp2->node;
p = regt->amplitude;
*regt = *reg0;
regt->amplitude = realloc(p, regt->size*sizeof(COMPLEX_FLOAT));
p = tmp1->amplitude;
*tmp1 = *reg0;
tmp1->amplitude = realloc(p, regt->size*sizeof(COMPLEX_FLOAT));
p = tmp2->amplitude;
*tmp2 = *reg0;
tmp2->node = realloc(p, regt->size*sizeof(quantum_reg_node));
for(i=0; i<reg0->size; i++)
tmp2->node[i].state = i;
tmp2->amplitude = realloc(p, regt->size*sizeof(COMPLEX_FLOAT));
if(!(regt->amplitude && tmp1->amplitude && tmp2->amplitude))
quantum_error(QUANTUM_ENOMEM);
*w = malloc(dim*sizeof(float));
@@ -82,13 +94,14 @@ quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
if(!work)
quantum_error(QUANTUM_ENOMEM);
cheev_(&jobz, &uplo, &dim, H.t, &dim, *w, work, &lwork, rwork, &info);
QUANTUM_LAPACK_SOLVER(&jobz, &uplo, &dim, H.t, &dim, *w, work, &lwork,
rwork, &info);
if(info < 0)
quantum_error(QUANTUM_ELAPACKARG);
else if(info > 0)
quantum_error(QUANTUM_ELAPACKCHEEV);
quantum_error(QUANTUM_ELAPACKCONV);
lwork = (int) work[0];
work = realloc(work, lwork*sizeof(COMPLEX_FLOAT));
@@ -96,13 +109,14 @@ quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
if(!work)
quantum_error(QUANTUM_ENOMEM);
cheev_(&jobz, &uplo, &dim, H.t, &dim, *w, work, &lwork, rwork, &info);
QUANTUM_LAPACK_SOLVER(&jobz, &uplo, &dim, H.t, &dim, *w, work, &lwork,
rwork, &info);
if(info < 0)
quantum_error(QUANTUM_ELAPACKARG);
else if(info > 0)
quantum_error(QUANTUM_ELAPACKCHEEV);
quantum_error(QUANTUM_ELAPACKCONV);
free(work);
@@ -113,17 +127,13 @@ quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
if(tmp1->size != reg0->size)
{
p = regt->node;
p = regt->amplitude;
*regt = *reg0;
regt->node = realloc(p, regt->size*sizeof(quantum_reg_node));
for(i=0; i<reg0->size; i++)
regt->node[i].state = i;
regt->amplitude = realloc(p, regt->size*sizeof(COMPLEX_FLOAT));
p = tmp1->node;
p = tmp1->amplitude;
*tmp1 = *reg0;
tmp1->node = realloc(p, regt->size*sizeof(quantum_reg_node));
for(i=0; i<reg0->size; i++)
tmp1->node[i].state = i;
tmp1->amplitude = realloc(p, regt->size*sizeof(COMPLEX_FLOAT));
quantum_adjoint(&H);
@@ -133,7 +143,7 @@ quantum_diag_time(float t, quantum_reg *reg0, quantum_reg *regt,
}
for(i=0; i<dim; i++)
tmp2->node[i].amplitude = quantum_cexp(-(*w)[i]*t)*tmp1->node[i].amplitude;
tmp2->amplitude[i] = quantum_cexp(-(*w)[i]*t)*tmp1->amplitude[i];
quantum_mvmult(regt, H, tmp2);