updated libquantum 1.1.1 source files

This commit is contained in:
libquantum
2016-10-27 04:32:19 +09:00
parent 701c63cdc4
commit 1a998a6b26
28 changed files with 4053 additions and 3995 deletions

261
gates.c
View File

@@ -51,13 +51,16 @@ quantum_cnot(int control, int target, quantum_reg *reg)
{
if(quantum_objcode_put(CNOT, control, target))
return;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
/* Flip the target bit of a basis state if the control bit is set */
if((reg->node[i].state & ((MAX_UNSIGNED) 1 << control)))
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
if((reg->state[i] & ((MAX_UNSIGNED) 1 << control)))
reg->state[i] ^= ((MAX_UNSIGNED) 1 << target);
}
quantum_decohere(reg);
}
@@ -80,16 +83,19 @@ quantum_toffoli(int control1, int control2, int target, quantum_reg *reg)
if(quantum_objcode_put(TOFFOLI, control1, control2, target))
return;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
/* Flip the target bit of a basis state if both control bits are
set */
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control1))
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control1))
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control2))
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control2))
{
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
reg->state[i] ^= ((MAX_UNSIGNED) 1 << target);
}
}
}
@@ -126,13 +132,16 @@ quantum_unbounded_toffoli(int controlling, quantum_reg *reg, ...)
va_end(bits);
#ifdef _OPENMP
#pragma omp parallel for private (j)
#endif
for(i=0; i<reg->size; i++)
{
for(j=0; (j < controlling) &&
(reg->node[i].state & (MAX_UNSIGNED) 1 << controls[j]); j++);
(reg->state[i] & (MAX_UNSIGNED) 1 << controls[j]); j++);
if(j == controlling) /* all control bits are set */
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
reg->state[i] ^= ((MAX_UNSIGNED) 1 << target);
}
free(controls);
@@ -160,11 +169,14 @@ quantum_sigma_x(int target, quantum_reg *reg)
if(quantum_objcode_put(SIGMA_X, target))
return;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
/* Flip the target bit of each basis state */
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
reg->state[i] ^= ((MAX_UNSIGNED) 1 << target);
}
quantum_decohere(reg);
}
@@ -179,18 +191,21 @@ quantum_sigma_y(int target, quantum_reg *reg)
if(quantum_objcode_put(SIGMA_Y, target))
return;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size;i++)
{
/* Flip the target bit of each basis state and multiply with
+/- i */
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
reg->state[i] ^= ((MAX_UNSIGNED) 1 << target);
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
reg->node[i].amplitude *= IMAGINARY;
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
reg->amplitude[i] *= IMAGINARY;
else
reg->node[i].amplitude *= -IMAGINARY;
reg->amplitude[i] *= -IMAGINARY;
}
quantum_decohere(reg);
@@ -206,12 +221,15 @@ quantum_sigma_z(int target, quantum_reg *reg)
if(quantum_objcode_put(SIGMA_Z, target))
return;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
/* Multiply with -1 if the target bit is set */
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
reg->node[i].amplitude *= -1;
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
reg->amplitude[i] *= -1;
}
quantum_decohere(reg);
}
@@ -248,21 +266,21 @@ quantum_swaptheleads(int width, quantum_reg *reg)
/* calculate left bit pattern */
pat1 = reg->node[i].state % ((MAX_UNSIGNED) 1 << width);
pat1 = reg->state[i] % ((MAX_UNSIGNED) 1 << width);
/*calculate right but pattern */
pat2 = 0;
for(j=0; j<width; j++)
pat2 += reg->node[i].state & ((MAX_UNSIGNED) 1 << (width + j));
pat2 += reg->state[i] & ((MAX_UNSIGNED) 1 << (width + j));
/* construct the new basis state */
l = reg->node[i].state - (pat1 + pat2);
l = reg->state[i] - (pat1 + pat2);
l += (pat1 << width);
l += (pat2 >> width);
reg->node[i].state = l;
reg->state[i] = l;
}
}
}
@@ -307,26 +325,29 @@ quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
{
/* determine whether XORed basis state already exists */
if(quantum_get_state(reg->node[i].state
if(quantum_get_state(reg->state[i]
^ ((MAX_UNSIGNED) 1 << target), *reg) == -1)
addsize++;
}
/* allocate memory for the new basis states */
reg->node = realloc(reg->node,
(reg->size + addsize) * sizeof(quantum_reg_node));
reg->state = realloc(reg->state,
(reg->size + addsize) * sizeof(MAX_UNSIGNED));
reg->amplitude = realloc(reg->amplitude,
(reg->size + addsize) * sizeof(COMPLEX_FLOAT));
if(!reg->node)
if(reg->size && !(reg->state && reg->amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(addsize*sizeof(quantum_reg_node));
quantum_memman(addsize*(sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
for(i=0; i<addsize; i++)
{
reg->node[i+reg->size].state = 0;
reg->node[i+reg->size].amplitude = 0;
reg->state[i+reg->size] = 0;
reg->amplitude[i+reg->size] = 0;
}
}
done = calloc(reg->size + addsize, sizeof(char));
@@ -348,29 +369,29 @@ quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
{
/* determine if the target of the basis state is set */
iset = reg->node[i].state & ((MAX_UNSIGNED) 1 << target);
iset = reg->state[i] & ((MAX_UNSIGNED) 1 << target);
tnot = 0;
j = quantum_get_state(reg->node[i].state
j = quantum_get_state(reg->state[i]
^ ((MAX_UNSIGNED) 1<<target), *reg);
t = reg->node[i].amplitude;
if(j >= 0)
tnot = reg->node[j].amplitude;
tnot = reg->amplitude[j];
t = reg->amplitude[i];
if(iset)
reg->node[i].amplitude = m.t[2] * tnot + m.t[3] * t;
reg->amplitude[i] = m.t[2] * tnot + m.t[3] * t;
else
reg->node[i].amplitude = m.t[0] * t + m.t[1] * tnot;
reg->amplitude[i] = m.t[0] * t + m.t[1] * tnot;
if(j >= 0)
{
if(iset)
reg->node[j].amplitude = m.t[0] * tnot + m.t[1] * t;
reg->amplitude[j] = m.t[0] * tnot + m.t[1] * t;
else
reg->node[j].amplitude = m.t[2] * t + m.t[3] * tnot;
reg->amplitude[j] = m.t[2] * t + m.t[3] * tnot;
}
@@ -382,14 +403,14 @@ quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
if((m.t[2] == 0) && !(iset))
break;
reg->node[k].state = reg->node[i].state
reg->state[k] = reg->state[i]
^ ((MAX_UNSIGNED) 1 << target);
if(iset)
reg->node[k].amplitude = m.t[1] * t;
reg->amplitude[k] = m.t[1] * t;
else
reg->node[k].amplitude = m.t[2] * t;
reg->amplitude[k] = m.t[2] * t;
k++;
}
@@ -411,7 +432,7 @@ quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
{
for(i=0, j=0; i<reg->size; i++)
{
if(quantum_prob_inline(reg->node[i].amplitude) < limit)
if(quantum_prob_inline(reg->amplitude[i]) < limit)
{
j++;
decsize++;
@@ -419,23 +440,33 @@ quantum_gate1(int target, quantum_matrix m, quantum_reg *reg)
else if(j)
{
reg->node[i-j].state = reg->node[i].state;
reg->node[i-j].amplitude = reg->node[i].amplitude;
reg->state[i-j] = reg->state[i];
reg->amplitude[i-j] = reg->amplitude[i];
}
}
if(decsize)
{
reg->size -= decsize;
reg->node = realloc(reg->node, reg->size * sizeof(quantum_reg_node));
reg->amplitude = realloc(reg->amplitude,
reg->size * sizeof(COMPLEX_FLOAT));
reg->state = realloc(reg->state,
reg->size * sizeof(MAX_UNSIGNED));
if(!reg->node)
if(reg->size && !(reg->state && reg->amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(-decsize * sizeof(quantum_reg_node));
quantum_memman(-decsize * (sizeof(MAX_UNSIGNED)
+ sizeof(COMPLEX_FLOAT)));
}
}
if(reg->size > (1 << (reg->hashw-1)))
fprintf(stderr, "Warning: inefficient hash table (size %i vs hash %i)\n",
reg->size, 1<<reg->hashw);
quantum_decohere(reg);
}
@@ -464,34 +495,36 @@ quantum_gate2(int target1, int target2, quantum_matrix m, quantum_reg *reg)
reg->hash[i] = 0;
for(i=0; i<reg->size; i++)
quantum_add_hash(reg->node[i].state, i, reg);
quantum_add_hash(reg->state[i], i, reg);
/* calculate the number of basis states to be added */
for(i=0; i<reg->size; i++)
{
if(quantum_get_state(reg->node[i].state ^ ((MAX_UNSIGNED) 1 << target1),
if(quantum_get_state(reg->state[i] ^ ((MAX_UNSIGNED) 1 << target1),
*reg) == -1)
addsize++;
if(quantum_get_state(reg->node[i].state ^ ((MAX_UNSIGNED) 1 << target2),
if(quantum_get_state(reg->state[i] ^ ((MAX_UNSIGNED) 1 << target2),
*reg) == -1)
addsize++;
}
/* allocate memory for the new basis states */
reg->node = realloc(reg->node,
(reg->size + addsize) * sizeof(quantum_reg_node));
if(!reg->node)
quantum_error(QUANTUM_EMSIZE);
reg->state = realloc(reg->state,
(reg->size + addsize) * sizeof(MAX_UNSIGNED));
reg->amplitude = realloc(reg->amplitude,
(reg->size + addsize) * sizeof(COMPLEX_FLOAT));
if(reg->size && !(reg->state && reg->amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(addsize*sizeof(quantum_reg_node));
quantum_memman(addsize*(sizeof(COMPLEX_FLOAT) + sizeof(MAX_UNSIGNED)));
for(i=0; i<addsize; i++)
{
reg->node[i+reg->size].state = 0;
reg->node[i+reg->size].amplitude = 0;
reg->state[i+reg->size] = 0;
reg->amplitude[i+reg->size] = 0;
}
done = calloc(reg->size + addsize, sizeof(char));
@@ -514,15 +547,15 @@ quantum_gate2(int target1, int target2, quantum_matrix m, quantum_reg *reg)
{
if(!done[i])
{
j = quantum_bitmask(reg->node[i].state, 2, bits);
j = quantum_bitmask(reg->state[i], 2, bits);
base[j] = i;
base[j ^ 1] = quantum_get_state(reg->node[i].state
base[j ^ 1] = quantum_get_state(reg->state[i]
^ ((MAX_UNSIGNED) 1 << target2),
*reg);
base[j ^ 2] = quantum_get_state(reg->node[i].state
base[j ^ 2] = quantum_get_state(reg->state[i]
^ ((MAX_UNSIGNED) 1 << target1),
*reg);
base[j ^ 3] = quantum_get_state(reg->node[i].state
base[j ^ 3] = quantum_get_state(reg->state[i]
^ ((MAX_UNSIGNED) 1 << target1)
^ ((MAX_UNSIGNED) 1 << target2),
*reg);
@@ -532,17 +565,17 @@ quantum_gate2(int target1, int target2, quantum_matrix m, quantum_reg *reg)
if(base[j] == -1)
{
base[j] = l;
// reg->node[l].state = reg->node[i].state
// reg->node[l].state = reg->state[i]
l++;
}
psi_sub[j] = reg->node[base[j]].amplitude;
psi_sub[j] = reg->amplitude[base[j]];
}
for(j=0; j<4; j++)
{
reg->node[base[j]].amplitude = 0;
reg->amplitude[base[j]] = 0;
for(k=0; k<4; k++)
reg->node[base[j]].amplitude += M(m, k, j) * psi_sub[k];
reg->amplitude[base[j]] += M(m, k, j) * psi_sub[k];
done[base[j]] = 1;
}
@@ -560,7 +593,7 @@ quantum_gate2(int target1, int target2, quantum_matrix m, quantum_reg *reg)
for(i=0, j=0; i<reg->size; i++)
{
if(quantum_prob_inline(reg->node[i].amplitude) < limit)
if(quantum_prob_inline(reg->amplitude[i]) < limit)
{
j++;
decsize++;
@@ -568,20 +601,26 @@ quantum_gate2(int target1, int target2, quantum_matrix m, quantum_reg *reg)
else if(j)
{
reg->node[i-j].state = reg->node[i].state;
reg->node[i-j].amplitude = reg->node[i].amplitude;
reg->state[i-j] = reg->state[i];
reg->amplitude[i-j] = reg->amplitude[i];
}
}
if(decsize)
{
reg->size -= decsize;
reg->node = realloc(reg->node, reg->size * sizeof(quantum_reg_node));
if(!reg->node)
reg->amplitude = realloc(reg->amplitude,
reg->size * sizeof(COMPLEX_FLOAT));
reg->state = realloc(reg->state,
reg->size * sizeof(MAX_UNSIGNED));
if(reg->size && !(reg->state && reg->amplitude))
quantum_error(QUANTUM_ENOMEM);
quantum_memman(-decsize * sizeof(quantum_reg_node));
quantum_memman(-decsize * (sizeof(MAX_UNSIGNED)
+ sizeof(COMPLEX_FLOAT)));
}
quantum_decohere(reg);
@@ -677,10 +716,10 @@ quantum_r_z(int target, float gamma, quantum_reg *reg)
for(i=0; i<reg->size; i++)
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
reg->node[i].amplitude *= z;
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
reg->amplitude[i] *= z;
else
reg->node[i].amplitude /= z;
reg->amplitude[i] /= z;
}
quantum_decohere(reg);
@@ -698,10 +737,13 @@ quantum_phase_scale(int target, float gamma, quantum_reg *reg)
return;
z = quantum_cexp(gamma);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
reg->node[i].amplitude *= z;
reg->amplitude[i] *= z;
}
quantum_decohere(reg);
@@ -720,11 +762,14 @@ quantum_phase_kick(int target, float gamma, quantum_reg *reg)
return;
z = quantum_cexp(gamma);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
reg->node[i].amplitude *= z;
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
reg->amplitude[i] *= z;
}
quantum_decohere(reg);
@@ -743,12 +788,15 @@ quantum_cond_phase(int control, int target, quantum_reg *reg)
z = quantum_cexp(pi / ((MAX_UNSIGNED) 1 << (control - target)));
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control))
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control))
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
reg->node[i].amplitude *= z;
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
reg->amplitude[i] *= z;
}
}
@@ -764,12 +812,15 @@ quantum_cond_phase_inv(int control, int target, quantum_reg *reg)
z = quantum_cexp(-pi / ((MAX_UNSIGNED) 1 << (control - target)));
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control))
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control))
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
reg->node[i].amplitude *= z;
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
reg->amplitude[i] *= z;
}
}
@@ -788,17 +839,49 @@ quantum_cond_phase_kick(int control, int target, float gamma, quantum_reg *reg)
z = quantum_cexp(gamma);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control))
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control))
{
if(reg->node[i].state & ((MAX_UNSIGNED) 1 << target))
reg->node[i].amplitude *= z;
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
reg->amplitude[i] *= z;
}
}
quantum_decohere(reg);
}
void
quantum_cond_phase_shift(int control, int target, float gamma, quantum_reg *reg)
{
int i;
COMPLEX_FLOAT z;
if(quantum_objcode_put(COND_PHASE, control, target, (double) gamma))
return;
z = quantum_cexp(gamma/2);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(i=0; i<reg->size; i++)
{
if(reg->state[i] & ((MAX_UNSIGNED) 1 << control))
{
if(reg->state[i] & ((MAX_UNSIGNED) 1 << target))
reg->amplitude[i] *= z;
else
reg->amplitude[i] /= z;
}
}
quantum_decohere(reg);
}
/* Increase the gate counter by INC steps or reset it if INC < 0. The
current value of the counter is returned. */