mirror of
https://github.com/codeplea/genann.git
synced 2026-01-04 22:50:27 +00:00
Initial commit
This commit is contained in:
276
test.c
Normal file
276
test.c
Normal file
@@ -0,0 +1,276 @@
|
||||
/*
|
||||
* GENANN - Minimal C Artificial Neural Network
|
||||
*
|
||||
* Copyright (c) 2015, 2016 Lewis Van Winkle
|
||||
*
|
||||
* http://CodePlea.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
*
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
*
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgement in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "genann.h"
|
||||
#include "minctest.h"
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
|
||||
|
||||
void basic() {
|
||||
GENANN *ann = genann_init(1, 0, 0, 1);
|
||||
|
||||
lequal(ann->total_weights, 2);
|
||||
double a;
|
||||
|
||||
|
||||
a = 0;
|
||||
ann->weight[0] = 0;
|
||||
ann->weight[1] = 0;
|
||||
lfequal(0.5, *genann_run(ann, &a));
|
||||
|
||||
a = 1;
|
||||
lfequal(0.5, *genann_run(ann, &a));
|
||||
|
||||
a = 11;
|
||||
lfequal(0.5, *genann_run(ann, &a));
|
||||
|
||||
a = 1;
|
||||
ann->weight[0] = 1;
|
||||
ann->weight[1] = 1;
|
||||
lfequal(0.5, *genann_run(ann, &a));
|
||||
|
||||
a = 10;
|
||||
ann->weight[0] = 1;
|
||||
ann->weight[1] = 1;
|
||||
lfequal(1.0, *genann_run(ann, &a));
|
||||
|
||||
a = -10;
|
||||
lfequal(0.0, *genann_run(ann, &a));
|
||||
|
||||
genann_free(ann);
|
||||
}
|
||||
|
||||
|
||||
void xor() {
|
||||
GENANN *ann = genann_init(2, 1, 2, 1);
|
||||
ann->activation_hidden = genann_act_threshold;
|
||||
ann->activation_output = genann_act_threshold;
|
||||
|
||||
lequal(ann->total_weights, 9);
|
||||
|
||||
/* First hidden. */
|
||||
ann->weight[0] = .5;
|
||||
ann->weight[1] = 1;
|
||||
ann->weight[2] = 1;
|
||||
|
||||
/* Second hidden. */
|
||||
ann->weight[3] = 1;
|
||||
ann->weight[4] = 1;
|
||||
ann->weight[5] = 1;
|
||||
|
||||
/* Output. */
|
||||
ann->weight[6] = .5;
|
||||
ann->weight[7] = 1;
|
||||
ann->weight[8] = -1;
|
||||
|
||||
|
||||
double input[4][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
|
||||
double output[4] = {0, 1, 1, 0};
|
||||
|
||||
lfequal(output[0], *genann_run(ann, input[0]));
|
||||
lfequal(output[1], *genann_run(ann, input[1]));
|
||||
lfequal(output[2], *genann_run(ann, input[2]));
|
||||
lfequal(output[3], *genann_run(ann, input[3]));
|
||||
|
||||
genann_free(ann);
|
||||
}
|
||||
|
||||
|
||||
void backprop() {
|
||||
GENANN *ann = genann_init(1, 0, 0, 1);
|
||||
|
||||
double input, output;
|
||||
input = .5;
|
||||
output = 1;
|
||||
|
||||
double first_try = *genann_run(ann, &input);
|
||||
genann_train(ann, &input, &output, .5);
|
||||
double second_try = *genann_run(ann, &input);
|
||||
lok(fabs(first_try - output) > fabs(second_try - output));
|
||||
|
||||
genann_free(ann);
|
||||
}
|
||||
|
||||
|
||||
void train_and() {
|
||||
double input[4][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
|
||||
double output[4] = {0, 0, 0, 1};
|
||||
|
||||
GENANN *ann = genann_init(2, 0, 0, 1);
|
||||
|
||||
int i, j;
|
||||
|
||||
for (i = 0; i < 50; ++i) {
|
||||
for (j = 0; j < 4; ++j) {
|
||||
genann_train(ann, input[j], output + j, .8);
|
||||
}
|
||||
}
|
||||
|
||||
ann->activation_output = genann_act_threshold;
|
||||
lfequal(output[0], *genann_run(ann, input[0]));
|
||||
lfequal(output[1], *genann_run(ann, input[1]));
|
||||
lfequal(output[2], *genann_run(ann, input[2]));
|
||||
lfequal(output[3], *genann_run(ann, input[3]));
|
||||
|
||||
genann_free(ann);
|
||||
}
|
||||
|
||||
|
||||
void train_or() {
|
||||
double input[4][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
|
||||
double output[4] = {0, 1, 1, 1};
|
||||
|
||||
GENANN *ann = genann_init(2, 0, 0, 1);
|
||||
genann_randomize(ann);
|
||||
|
||||
int i, j;
|
||||
|
||||
for (i = 0; i < 50; ++i) {
|
||||
for (j = 0; j < 4; ++j) {
|
||||
genann_train(ann, input[j], output + j, .8);
|
||||
}
|
||||
}
|
||||
|
||||
ann->activation_output = genann_act_threshold;
|
||||
lfequal(output[0], *genann_run(ann, input[0]));
|
||||
lfequal(output[1], *genann_run(ann, input[1]));
|
||||
lfequal(output[2], *genann_run(ann, input[2]));
|
||||
lfequal(output[3], *genann_run(ann, input[3]));
|
||||
|
||||
genann_free(ann);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void train_xor() {
|
||||
double input[4][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
|
||||
double output[4] = {0, 1, 1, 0};
|
||||
|
||||
GENANN *ann = genann_init(2, 1, 2, 1);
|
||||
|
||||
int i, j;
|
||||
|
||||
for (i = 0; i < 300; ++i) {
|
||||
for (j = 0; j < 4; ++j) {
|
||||
genann_train(ann, input[j], output + j, 3);
|
||||
}
|
||||
/* printf("%1.2f ", xor_score(ann)); */
|
||||
}
|
||||
|
||||
ann->activation_output = genann_act_threshold;
|
||||
lfequal(output[0], *genann_run(ann, input[0]));
|
||||
lfequal(output[1], *genann_run(ann, input[1]));
|
||||
lfequal(output[2], *genann_run(ann, input[2]));
|
||||
lfequal(output[3], *genann_run(ann, input[3]));
|
||||
|
||||
genann_free(ann);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void persist() {
|
||||
GENANN *first = genann_init(1000, 5, 50, 10);
|
||||
|
||||
FILE *out = fopen("persist.txt", "w");
|
||||
genann_write(first, out);
|
||||
fclose(out);
|
||||
|
||||
|
||||
FILE *in = fopen("persist.txt", "r");
|
||||
GENANN *second = genann_read(in);
|
||||
fclose(out);
|
||||
|
||||
lequal(first->inputs, second->inputs);
|
||||
lequal(first->hidden_layers, second->hidden_layers);
|
||||
lequal(first->hidden, second->hidden);
|
||||
lequal(first->outputs, second->outputs);
|
||||
lequal(first->total_weights, second->total_weights);
|
||||
|
||||
int i;
|
||||
for (i = 0; i < first->total_weights; ++i) {
|
||||
lok(first->weight[i] == second->weight[i]);
|
||||
}
|
||||
|
||||
genann_free(first);
|
||||
genann_free(second);
|
||||
}
|
||||
|
||||
|
||||
void copy() {
|
||||
GENANN *first = genann_init(1000, 5, 50, 10);
|
||||
|
||||
GENANN *second = genann_copy(first);
|
||||
|
||||
lequal(first->inputs, second->inputs);
|
||||
lequal(first->hidden_layers, second->hidden_layers);
|
||||
lequal(first->hidden, second->hidden);
|
||||
lequal(first->outputs, second->outputs);
|
||||
lequal(first->total_weights, second->total_weights);
|
||||
|
||||
int i;
|
||||
for (i = 0; i < first->total_weights; ++i) {
|
||||
lfequal(first->weight[i], second->weight[i]);
|
||||
}
|
||||
|
||||
genann_free(first);
|
||||
genann_free(second);
|
||||
}
|
||||
|
||||
|
||||
void sigmoid() {
|
||||
double i = -20;
|
||||
const double max = 20;
|
||||
const double d = .0001;
|
||||
|
||||
while (i < max) {
|
||||
lfequal(genann_act_sigmoid(i), genann_act_sigmoid_cached(i));
|
||||
i += d;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
printf("GENANN TEST SUITE\n");
|
||||
|
||||
srand(100);
|
||||
|
||||
lrun("basic", basic);
|
||||
lrun("xor", xor);
|
||||
lrun("backprop", backprop);
|
||||
lrun("train and", train_and);
|
||||
lrun("train or", train_or);
|
||||
lrun("train xor", train_xor);
|
||||
lrun("persist", persist);
|
||||
lrun("copy", copy);
|
||||
lrun("sigmoid", sigmoid);
|
||||
|
||||
lresults();
|
||||
|
||||
return lfails != 0;
|
||||
}
|
||||
Reference in New Issue
Block a user