Files
cglm/include/cglm-euler.h
2016-10-24 21:46:43 +03:00

166 lines
3.6 KiB
C

/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_euler_h
#define cglm_euler_h
#include "cglm-common.h"
/*!
* @brief euler angles (in radian) using xyz sequence
*
* @param[in] m affine transform
* @param[out] pitch x
* @param[out] yaw y
* @param[out] roll z
*/
CGLM_INLINE
void
glm_euler_angles(mat4 m,
float * __restrict pitch,
float * __restrict yaw,
float * __restrict roll) {
if (m[2][0] < 1.0f) {
if (m[2][0] > -1.0f) {
float a[2][3];
float cy1, cy2;
int path;
a[0][0] = asinf(m[2][0]);
a[1][0] = M_PI - a[0][0];
cy1 = cosf(a[0][0]);
cy2 = cosf(a[1][0]);
a[0][1] = atan2f(-m[2][1] / cy1, m[2][2] / cy1);
a[1][1] = atan2f(-m[2][1] / cy2, m[2][2] / cy2);
a[0][2] = atan2f(-m[1][0] / cy1, m[0][0] / cy1);
a[1][2] = atan2f(-m[1][0] / cy2, m[0][0] / cy2);
path = (fabsf(a[0][0]) + fabsf(a[0][1]) + fabsf(a[0][2])) >
(fabsf(a[1][0]) + fabsf(a[1][1]) + fabsf(a[1][2]));
*yaw = a[path][0];
*pitch = a[path][1];
*roll = a[path][2];
} else {
*yaw = -M_PI_2;
*pitch = -atan2(m[0][1], m[2][1]);
*roll = 0;
}
} else {
*yaw = M_PI_2;
*pitch = atan2f(m[0][1], m[1][1]);
*roll = 0;
}
}
/*!
* @brief build rotation matrix from euler angles(xyz)
*/
CGLM_INLINE
void
glm_euler(float pitch,
float yaw,
float roll,
mat4 dest) {
float cx, cy, cz,
sx, sy, sz;
sx = sinf(pitch); cx = cosf(pitch);
sy = sinf(yaw); cy = cosf(yaw);
sz = sinf(roll); cz = cosf(roll);
dest[0][0] = cy * cz;
dest[0][1] = cz * sx * sy + cx * sz;
dest[0][2] =-cx * cz * sy + sx * sz;
dest[1][0] =-cy * sz;
dest[1][1] = cx * cz - sx * sy * sz;
dest[1][2] = cz * sx + cx * sy * sz;
dest[2][0] = sy;
dest[2][1] =-cy * sx;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles (zyx)
*/
CGLM_INLINE
void
glm_euler_zyx(float yaw,
float pitch,
float roll,
mat4 dest) {
float cx, cy, cz,
sx, sy, sz;
sx = sinf(pitch); cx = cosf(pitch);
sy = sinf(yaw); cy = cosf(yaw);
sz = sinf(roll); cz = cosf(roll);
dest[0][0] = cy * cz;
dest[0][1] = cy * sz;
dest[0][2] =-sy;
dest[1][0] = cz * sx * sy - cx * sz;
dest[1][1] = cx * cz + sx * sy * sz;
dest[1][2] = cy * sx;
dest[2][0] = cx * cz * sy + sx * sz;
dest[2][1] =-cz * sx + cx * sy * sz;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles (zxy)
*/
CGLM_INLINE
void
glm_euler_zxy(float yaw,
float pitch,
float roll,
mat4 dest) {
float cx, cy, cz,
sx, sy, sz;
sx = sinf(pitch); cx = cosf(pitch);
sy = sinf(yaw); cy = cosf(yaw);
sz = sinf(roll); cz = cosf(roll);
dest[0][0] = cy * cz - sx * sy * sz;
dest[0][1] = cz * sx * sy + cy + sz;
dest[0][2] =-cx * sy;
dest[1][0] =-cx * sz;
dest[1][1] = cx * cz;
dest[1][2] = sx;
dest[2][0] = cz * sy + cy * sx * sz;
dest[2][1] =-cy * cz * sx + sy * sz;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
#endif /* cglm_euler_h */