Files
cglm/test/src/test_quat.c
Recep Aslantas 9ab9e95ce5 Custom Built-in Unit Test Suite (#105)
* tests: new built-in test runner

* tests: update tests for new builtin test api

* tests: print test suite logs

* tests: remove cmocka from build files

* tests: colorize test suite log and remove redundant prints
2019-09-12 06:56:44 +03:00

205 lines
5.7 KiB
C

/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#include "test_common.h"
CGLM_INLINE
void
test_quat_mul_raw(versor p, versor q, versor dest) {
dest[0] = p[3] * q[0] + p[0] * q[3] + p[1] * q[2] - p[2] * q[1];
dest[1] = p[3] * q[1] - p[0] * q[2] + p[1] * q[3] + p[2] * q[0];
dest[2] = p[3] * q[2] + p[0] * q[1] - p[1] * q[0] + p[2] * q[3];
dest[3] = p[3] * q[3] - p[0] * q[0] - p[1] * q[1] - p[2] * q[2];
}
TEST_IMPL(quat) {
mat4 inRot, outRot, view1, view2, rot1, rot2;
versor inQuat, outQuat, q3, q4, q5;
vec3 eye, axis, imag, v1, v2;
int i;
/* 0. test identiy quat */
glm_quat_identity(q4);
ASSERT(glm_eq(glm_quat_real(q4), cosf(glm_rad(0.0f) * 0.5f)))
glm_quat_mat4(q4, rot1);
ASSERT(test_assert_mat4_eq2(rot1, GLM_MAT4_IDENTITY, 0.000009).status == 1)
/* 1. test quat to mat and mat to quat */
for (i = 0; i < 1000; i++) {
test_rand_quat(inQuat);
glmc_quat_mat4(inQuat, inRot);
glmc_mat4_quat(inRot, outQuat);
glmc_quat_mat4(outQuat, outRot);
/* 2. test first quat and generated one equality */
ASSERT(test_assert_quat_eq_abs(inQuat, outQuat).status == 1);
/* 3. test first rot and second rotation */
/* almost equal */
ASSERT(test_assert_mat4_eq2(inRot, outRot, 0.000009).status == 1);
/* 4. test SSE mul and raw mul */
#if defined( __SSE__ ) || defined( __SSE2__ )
test_quat_mul_raw(inQuat, outQuat, q3);
glm_quat_mul_sse2(inQuat, outQuat, q4);
ASSERT(test_assert_quat_eq(q3, q4).status == 1);
#endif
}
/* 5. test lookat */
test_rand_vec3(eye);
glm_quatv(q3, glm_rad(-90.0f), GLM_YUP);
/* now X axis must be forward axis, Z must be right axis */
glm_look(eye, GLM_XUP, GLM_YUP, view1);
/* create view matrix with quaternion */
glm_quat_look(eye, q3, view2);
ASSERT(test_assert_mat4_eq2(view1, view2, 0.000009).status == 1);
/* 6. test quaternion rotation matrix result */
test_rand_quat(q3);
glm_quat_mat4(q3, rot1);
/* 6.1 test axis and angle of quat */
glm_quat_axis(q3, axis);
glm_rotate_make(rot2, glm_quat_angle(q3), axis);
ASSERT(test_assert_mat4_eq2(rot1, rot2, 0.000009).status == 1);
/* 7. test quaternion multiplication (hamilton product),
final rotation = first rotation + second = quat1 * quat2
*/
test_rand_quat(q3);
test_rand_quat(q4);
glm_quat_mul(q3, q4, q5);
glm_quat_axis(q3, axis);
glm_rotate_make(rot1, glm_quat_angle(q3), axis);
glm_quat_axis(q4, axis);
glm_rotate(rot1, glm_quat_angle(q4), axis);
/* rot2 is combine of two rotation now test with quaternion result */
glm_quat_mat4(q5, rot2);
/* result must be same (almost) */
ASSERT(test_assert_mat4_eq2(rot1, rot2, 0.000009).status == 1)
/* 8. test quaternion for look rotation */
/* 8.1 same direction */
/* look at from 0, 0, 1 to zero, direction = 0, 0, -1 */
glm_quat_for((vec3){0, 0, -1}, (vec3){0, 0, -1}, GLM_YUP, q3);
/* result must be identity */
glm_quat_identity(q4);
ASSERT(test_assert_quat_eq(q3, q4).status == 1)
/* look at from 0, 0, 1 to zero, direction = 0, 0, -1 */
glm_quat_forp(GLM_ZUP, GLM_VEC3_ZERO, (vec3){0, 0, -1}, GLM_YUP, q3);
/* result must be identity */
glm_quat_identity(q4);
ASSERT(test_assert_quat_eq(q3, q4).status == 1)
/* 8.2 perpendicular */
glm_quat_for(GLM_XUP, (vec3){0, 0, -1}, GLM_YUP, q3);
/* result must be -90 */
glm_quatv(q4, glm_rad(-90.0f), GLM_YUP);
ASSERT(test_assert_quat_eq(q3, q4).status == 1)
/* 9. test imag, real */
/* 9.1 real */
ASSERT(glm_eq(glm_quat_real(q4), cosf(glm_rad(-90.0f) * 0.5f)))
/* 9.1 imag */
glm_quat_imag(q4, imag);
/* axis = Y_UP * sinf(angle * 0.5), YUP = 0, 1, 0 */
axis[0] = 0.0f;
axis[1] = sinf(glm_rad(-90.0f) * 0.5f) * 1.0f;
axis[2] = 0.0f;
ASSERT(glm_vec3_eqv_eps(imag, axis));
/* 9.2 axis */
glm_quat_axis(q4, axis);
imag[0] = 0.0f;
imag[1] = -1.0f;
imag[2] = 0.0f;
ASSERT(test_assert_vec3_eq(imag, axis).status == 1);
/* 10. test rotate vector using quat */
/* (0,0,-1) around (1,0,0) must give (0,1,0) */
v1[0] = 0.0f; v1[1] = 0.0f; v1[2] = -1.0f;
v2[0] = 0.0f; v2[1] = 0.0f; v2[2] = -1.0f;
glm_vec3_rotate(v1, glm_rad(90.0f), (vec3){1.0f, 0.0f, 0.0f});
glm_quatv(q3, glm_rad(90.0f), (vec3){1.0f, 0.0f, 0.0f});
glm_vec4_scale(q3, 1.5, q3);
glm_quat_rotatev(q3, v2, v2);
/* result must be : (0,1,0) */
ASSERT(fabsf(v1[0]) <= 0.00009f
&& fabsf(v1[1] - 1.0f) <= 0.00009f
&& fabsf(v1[2]) <= 0.00009f)
ASSERT(test_assert_vec3_eq(v1, v2).status == 1)
/* 11. test rotate transform */
glm_translate_make(rot1, (vec3){-10.0, 45.0f, 8.0f});
glm_rotate(rot1, glm_rad(-90), GLM_ZUP);
glm_quatv(q3, glm_rad(-90.0f), GLM_ZUP);
glm_translate_make(rot2, (vec3){-10.0, 45.0f, 8.0f});
glm_quat_rotate(rot2, q3, rot2);
/* result must be same (almost) */
ASSERT(test_assert_mat4_eq2(rot1, rot2, 0.000009).status == 1)
glm_rotate_make(rot1, glm_rad(-90), GLM_ZUP);
glm_translate(rot1, (vec3){-10.0, 45.0f, 8.0f});
glm_quatv(q3, glm_rad(-90.0f), GLM_ZUP);
glm_mat4_identity(rot2);
glm_quat_rotate(rot2, q3, rot2);
glm_translate(rot2, (vec3){-10.0, 45.0f, 8.0f});
/* result must be same (almost) */
ASSERT(test_assert_mat4_eq2(rot1, rot2, 0.000009).status == 1)
/* reverse */
glm_rotate_make(rot1, glm_rad(-90), GLM_ZUP);
glm_quatv(q3, glm_rad(90.0f), GLM_ZUP);
glm_quat_rotate(rot1, q3, rot1);
/* result must be identity */
ASSERT(test_assert_mat4_eq2(rot1, GLM_MAT4_IDENTITY, 0.000009).status == 1)
test_rand_quat(q3);
/* 12. inverse of quat, multiplication must be IDENTITY */
glm_quat_inv(q3, q4);
glm_quat_mul(q3, q4, q5);
glm_quat_identity(q3);
ASSERT(test_assert_quat_eq(q3, q5).status == 1)
/* TODO: add tests for slerp, lerp */
TEST_SUCCESS
}