Files
cglm/include/cglm/vec3.h
2018-05-30 23:35:59 +03:00

804 lines
16 KiB
C

/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*!
* vec3 functions dont have suffix e.g glm_vec_dot (not glm_vec3_dot)
* all functions without suffix are vec3 functions
*/
/*
Macros:
glm_vec_dup(v, dest)
GLM_VEC3_ONE_INIT
GLM_VEC3_ZERO_INIT
GLM_VEC3_ONE
GLM_VEC3_ZERO
GLM_YUP
GLM_ZUP
GLM_XUP
Functions:
CGLM_INLINE void glm_vec3(vec4 v4, vec3 dest);
CGLM_INLINE void glm_vec_copy(vec3 a, vec3 dest);
CGLM_INLINE float glm_vec_dot(vec3 a, vec3 b);
CGLM_INLINE void glm_vec_cross(vec3 a, vec3 b, vec3 d);
CGLM_INLINE float glm_vec_norm2(vec3 v);
CGLM_INLINE float glm_vec_norm(vec3 vec);
CGLM_INLINE void glm_vec_add(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec_adds(vec3 a, float s, vec3 dest);
CGLM_INLINE void glm_vec_sub(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec_subs(vec3 a, float s, vec3 dest);
CGLM_INLINE void glm_vec_mul(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec_scale(vec3 v, float s, vec3 dest);
CGLM_INLINE void glm_vec_scale_as(vec3 v, float s, vec3 dest);
CGLM_INLINE void glm_vec_div(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec_divs(vec3 a, float s, vec3 dest);
CGLM_INLINE void glm_vec_addadd(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec_subadd(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec_muladd(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec_flipsign(vec3 v);
CGLM_INLINE void glm_vec_inv(vec3 v);
CGLM_INLINE void glm_vec_inv_to(vec3 v, vec3 dest);
CGLM_INLINE void glm_vec_normalize(vec3 v);
CGLM_INLINE void glm_vec_normalize_to(vec3 vec, vec3 dest);
CGLM_INLINE float glm_vec_distance(vec3 v1, vec3 v2);
CGLM_INLINE float glm_vec_angle(vec3 v1, vec3 v2);
CGLM_INLINE void glm_vec_rotate(vec3 v, float angle, vec3 axis);
CGLM_INLINE void glm_vec_rotate_m4(mat4 m, vec3 v, vec3 dest);
CGLM_INLINE void glm_vec_proj(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec_center(vec3 v1, vec3 v2, vec3 dest);
CGLM_INLINE void glm_vec_maxv(vec3 v1, vec3 v2, vec3 dest);
CGLM_INLINE void glm_vec_minv(vec3 v1, vec3 v2, vec3 dest);
CGLM_INLINE void glm_vec_ortho(vec3 v, vec3 dest);
CGLM_INLINE void glm_vec_clamp(vec3 v, float minVal, float maxVal);
Convenient:
CGLM_INLINE void glm_cross(vec3 a, vec3 b, vec3 d);
CGLM_INLINE float glm_dot(vec3 a, vec3 b);
CGLM_INLINE void glm_normalize(vec3 v);
CGLM_INLINE void glm_normalize_to(vec3 v, vec3 dest);
*/
#ifndef cglm_vec3_h
#define cglm_vec3_h
#include "common.h"
#include "vec4.h"
#include "vec3-ext.h"
#include "util.h"
/* DEPRECATED! use _copy, _ucopy versions */
#define glm_vec_dup(v, dest) glm_vec_copy(v, dest)
#define GLM_VEC3_ONE_INIT {1.0f, 1.0f, 1.0f}
#define GLM_VEC3_ZERO_INIT {0.0f, 0.0f, 0.0f}
#define GLM_VEC3_ONE ((vec3)GLM_VEC3_ONE_INIT)
#define GLM_VEC3_ZERO ((vec3)GLM_VEC3_ZERO_INIT)
#define GLM_YUP ((vec3){0.0f, 1.0f, 0.0f})
#define GLM_ZUP ((vec3){0.0f, 0.0f, 1.0f})
#define GLM_XUP ((vec3){1.0f, 0.0f, 0.0f})
/*!
* @brief init vec3 using vec4
*
* @param[in] v4 vector4
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3(vec4 v4, vec3 dest) {
dest[0] = v4[0];
dest[1] = v4[1];
dest[2] = v4[2];
}
/*!
* @brief copy all members of [a] to [dest]
*
* @param[in] a source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec_copy(vec3 a, vec3 dest) {
dest[0] = a[0];
dest[1] = a[1];
dest[2] = a[2];
}
/*!
* @brief make vector zero
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec_zero(vec3 v) {
v[0] = 0.0f;
v[1] = 0.0f;
v[2] = 0.0f;
}
/*!
* @brief make vector one
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec_one(vec3 v) {
v[0] = 1.0f;
v[1] = 1.0f;
v[2] = 1.0f;
}
/*!
* @brief vec3 dot product
*
* @param[in] a vector1
* @param[in] b vector2
*
* @return dot product
*/
CGLM_INLINE
float
glm_vec_dot(vec3 a, vec3 b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
/*!
* @brief vec3 cross product
*
* @param[in] a source 1
* @param[in] b source 2
* @param[out] d destination
*/
CGLM_INLINE
void
glm_vec_cross(vec3 a, vec3 b, vec3 d) {
/* (u2.v3 - u3.v2, u3.v1 - u1.v3, u1.v2 - u2.v1) */
d[0] = a[1] * b[2] - a[2] * b[1];
d[1] = a[2] * b[0] - a[0] * b[2];
d[2] = a[0] * b[1] - a[1] * b[0];
}
/*!
* @brief norm * norm (magnitude) of vec
*
* we can use this func instead of calling norm * norm, because it would call
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
* not good name for this func
*
* @param[in] v vector
*
* @return norm * norm
*/
CGLM_INLINE
float
glm_vec_norm2(vec3 v) {
return glm_vec_dot(v, v);
}
/*!
* @brief norm (magnitude) of vec3
*
* @param[in] vec vector
*
* @return norm
*/
CGLM_INLINE
float
glm_vec_norm(vec3 vec) {
return sqrtf(glm_vec_norm2(vec));
}
/*!
* @brief add a vector to b vector store result in dest
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec_add(vec3 a, vec3 b, vec3 dest) {
dest[0] = a[0] + b[0];
dest[1] = a[1] + b[1];
dest[2] = a[2] + b[2];
}
/*!
* @brief add scalar to v vector store result in dest (d = v + s)
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec_adds(vec3 v, float s, vec3 dest) {
dest[0] = v[0] + s;
dest[1] = v[1] + s;
dest[2] = v[2] + s;
}
/*!
* @brief subtract v2 vector from v1 vector store result in dest
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec_sub(vec3 a, vec3 b, vec3 dest) {
dest[0] = a[0] - b[0];
dest[1] = a[1] - b[1];
dest[2] = a[2] - b[2];
}
/*!
* @brief subtract scalar from v vector store result in dest (d = v - s)
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec_subs(vec3 v, float s, vec3 dest) {
dest[0] = v[0] - s;
dest[1] = v[1] - s;
dest[2] = v[2] - s;
}
/*!
* @brief multiply two vector (component-wise multiplication)
*
* @param a v1
* @param b v2
* @param d v3 = (a[0] * b[0], a[1] * b[1], a[2] * b[2])
*/
CGLM_INLINE
void
glm_vec_mul(vec3 a, vec3 b, vec3 d) {
d[0] = a[0] * b[0];
d[1] = a[1] * b[1];
d[2] = a[2] * b[2];
}
/*!
* @brief multiply/scale vec3 vector with scalar: result = v * s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec_scale(vec3 v, float s, vec3 dest) {
dest[0] = v[0] * s;
dest[1] = v[1] * s;
dest[2] = v[2] * s;
}
/*!
* @brief make vec3 vector scale as specified: result = unit(v) * s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec_scale_as(vec3 v, float s, vec3 dest) {
float norm;
norm = glm_vec_norm(v);
if (norm == 0.0f) {
glm_vec_zero(dest);
return;
}
glm_vec_scale(v, s / norm, dest);
}
/*!
* @brief div vector with another component-wise division: d = a / b
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest result = (a[0]/b[0], a[1]/b[1], a[2]/b[2])
*/
CGLM_INLINE
void
glm_vec_div(vec3 a, vec3 b, vec3 dest) {
dest[0] = a[0] / b[0];
dest[1] = a[1] / b[1];
dest[2] = a[2] / b[2];
}
/*!
* @brief div vector with scalar: d = v / s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest result = (a[0]/s, a[1]/s, a[2]/s)
*/
CGLM_INLINE
void
glm_vec_divs(vec3 v, float s, vec3 dest) {
dest[0] = v[0] / s;
dest[1] = v[1] / s;
dest[2] = v[2] / s;
}
/*!
* @brief add two vectors and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a + b)
*/
CGLM_INLINE
void
glm_vec_addadd(vec3 a, vec3 b, vec3 dest) {
dest[0] += a[0] + b[0];
dest[1] += a[1] + b[1];
dest[2] += a[2] + b[2];
}
/*!
* @brief sub two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a + b)
*/
CGLM_INLINE
void
glm_vec_subadd(vec3 a, vec3 b, vec3 dest) {
dest[0] += a[0] - b[0];
dest[1] += a[1] - b[1];
dest[2] += a[2] - b[2];
}
/*!
* @brief mul two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a * b)
*/
CGLM_INLINE
void
glm_vec_muladd(vec3 a, vec3 b, vec3 dest) {
dest[0] += a[0] * b[0];
dest[1] += a[1] * b[1];
dest[2] += a[2] * b[2];
}
/*!
* @brief mul vector with scalar and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector
* @param[in] s scalar
* @param[out] dest dest += (a * b)
*/
CGLM_INLINE
void
glm_vec_muladds(vec3 a, float s, vec3 dest) {
dest[0] += a[0] * s;
dest[1] += a[1] * s;
dest[2] += a[2] * s;
}
/*!
* @brief flip sign of all vec3 members
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec_flipsign(vec3 v) {
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
/*!
* @brief flip sign of all vec3 members and store result in dest
*
* @param[in] v vector
* @param[out] dest result vector
*/
CGLM_INLINE
void
glm_vec_flipsign_to(vec3 v, vec3 dest) {
dest[0] = -v[0];
dest[1] = -v[1];
dest[2] = -v[2];
}
/*!
* @brief make vector as inverse/opposite of itself
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec_inv(vec3 v) {
glm_vec_flipsign(v);
}
/*!
* @brief inverse/opposite vector
*
* @param[in] v source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec_inv_to(vec3 v, vec3 dest) {
glm_vec_flipsign_to(v, dest);
}
/*!
* @brief normalize vec3 and store result in same vec
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec_normalize(vec3 v) {
float norm;
norm = glm_vec_norm(v);
if (norm == 0.0f) {
v[0] = v[1] = v[2] = 0.0f;
return;
}
glm_vec_scale(v, 1.0f / norm, v);
}
/*!
* @brief normalize vec3 to dest
*
* @param[in] vec source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec_normalize_to(vec3 vec, vec3 dest) {
float norm;
norm = glm_vec_norm(vec);
if (norm == 0.0f) {
glm_vec_zero(dest);
return;
}
glm_vec_scale(vec, 1.0f / norm, dest);
}
/*!
* @brief angle betwen two vector
*
* @param[in] v1 vector1
* @param[in] v2 vector2
*
* @return angle as radians
*/
CGLM_INLINE
float
glm_vec_angle(vec3 v1, vec3 v2) {
float norm;
/* maybe compiler generate approximation instruction (rcp) */
norm = 1.0f / (glm_vec_norm(v1) * glm_vec_norm(v2));
return acosf(glm_vec_dot(v1, v2) * norm);
}
/*!
* @brief rotate vec3 around axis by angle using Rodrigues' rotation formula
*
* @param[in, out] v vector
* @param[in] axis axis vector (must be unit vector)
* @param[in] angle angle by radians
*/
CGLM_INLINE
void
glm_vec_rotate(vec3 v, float angle, vec3 axis) {
vec3 v1, v2, k;
float c, s;
c = cosf(angle);
s = sinf(angle);
glm_vec_normalize_to(axis, k);
/* Right Hand, Rodrigues' rotation formula:
v = v*cos(t) + (kxv)sin(t) + k*(k.v)(1 - cos(t))
*/
glm_vec_scale(v, c, v1);
glm_vec_cross(k, v, v2);
glm_vec_scale(v2, s, v2);
glm_vec_add(v1, v2, v1);
glm_vec_scale(k, glm_vec_dot(k, v) * (1.0f - c), v2);
glm_vec_add(v1, v2, v);
}
/*!
* @brief apply rotation matrix to vector
*
* matrix format should be (no perspective):
* a b c x
* e f g y
* i j k z
* 0 0 0 w
*
* @param[in] m affine matrix or rot matrix
* @param[in] v vector
* @param[out] dest rotated vector
*/
CGLM_INLINE
void
glm_vec_rotate_m4(mat4 m, vec3 v, vec3 dest) {
vec4 x, y, z, res;
glm_vec4_normalize_to(m[0], x);
glm_vec4_normalize_to(m[1], y);
glm_vec4_normalize_to(m[2], z);
glm_vec4_scale(x, v[0], res);
glm_vec4_muladds(y, v[1], res);
glm_vec4_muladds(z, v[2], res);
glm_vec3(res, dest);
}
/*!
* @brief apply rotation matrix to vector
*
* @param[in] m affine matrix or rot matrix
* @param[in] v vector
* @param[out] dest rotated vector
*/
CGLM_INLINE
void
glm_vec_rotate_m3(mat3 m, vec3 v, vec3 dest) {
vec4 res, x, y, z;
glm_vec4(m[0], 0.0f, x);
glm_vec4(m[1], 0.0f, y);
glm_vec4(m[2], 0.0f, z);
glm_vec4_normalize(x);
glm_vec4_normalize(y);
glm_vec4_normalize(z);
glm_vec4_scale(x, v[0], res);
glm_vec4_muladds(y, v[1], res);
glm_vec4_muladds(z, v[2], res);
glm_vec3(res, dest);
}
/*!
* @brief project a vector onto b vector
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest projected vector
*/
CGLM_INLINE
void
glm_vec_proj(vec3 a, vec3 b, vec3 dest) {
glm_vec_scale(b,
glm_vec_dot(a, b) / glm_vec_norm2(b),
dest);
}
/**
* @brief find center point of two vector
*
* @param[in] v1 vector1
* @param[in] v2 vector2
* @param[out] dest center point
*/
CGLM_INLINE
void
glm_vec_center(vec3 v1, vec3 v2, vec3 dest) {
glm_vec_add(v1, v2, dest);
glm_vec_scale(dest, 0.5f, dest);
}
/**
* @brief squared distance between two vectors
*
* @param[in] v1 vector1
* @param[in] v2 vector2
* @return returns squared distance (distance * distance)
*/
CGLM_INLINE
float
glm_vec_distance2(vec3 v1, vec3 v2) {
return glm_pow2(v2[0] - v1[0])
+ glm_pow2(v2[1] - v1[1])
+ glm_pow2(v2[2] - v1[2]);
}
/**
* @brief distance between two vectors
*
* @param[in] v1 vector1
* @param[in] v2 vector2
* @return returns distance
*/
CGLM_INLINE
float
glm_vec_distance(vec3 v1, vec3 v2) {
return sqrtf(glm_vec_distance2(v1, v2));
}
/*!
* @brief max values of vectors
*
* @param[in] v1 vector1
* @param[in] v2 vector2
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec_maxv(vec3 v1, vec3 v2, vec3 dest) {
dest[0] = glm_max(v1[0], v2[0]);
dest[1] = glm_max(v1[1], v2[1]);
dest[2] = glm_max(v1[2], v2[2]);
}
/*!
* @brief min values of vectors
*
* @param[in] v1 vector1
* @param[in] v2 vector2
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec_minv(vec3 v1, vec3 v2, vec3 dest) {
dest[0] = glm_min(v1[0], v2[0]);
dest[1] = glm_min(v1[1], v2[1]);
dest[2] = glm_min(v1[2], v2[2]);
}
/*!
* @brief possible orthogonal/perpendicular vector
*
* @param[in] v vector
* @param[out] dest orthogonal/perpendicular vector
*/
CGLM_INLINE
void
glm_vec_ortho(vec3 v, vec3 dest) {
dest[0] = v[1] - v[2];
dest[1] = v[2] - v[0];
dest[2] = v[0] - v[1];
}
/*!
* @brief clamp vector's individual members between min and max values
*
* @param[in, out] v vector
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
CGLM_INLINE
void
glm_vec_clamp(vec3 v, float minVal, float maxVal) {
v[0] = glm_clamp(v[0], minVal, maxVal);
v[1] = glm_clamp(v[1], minVal, maxVal);
v[2] = glm_clamp(v[2], minVal, maxVal);
}
/*!
* @brief linear interpolation between two vector
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec_lerp(vec3 from, vec3 to, float t, vec3 dest) {
vec3 s, v;
/* from + s * (to - from) */
glm_vec_broadcast(glm_clamp(t, 0.0f, 1.0f), s);
glm_vec_sub(to, from, v);
glm_vec_mulv(s, v, v);
glm_vec_add(from, v, dest);
}
/*!
* @brief vec3 cross product
*
* this is just convenient wrapper
*
* @param[in] a source 1
* @param[in] b source 2
* @param[out] d destination
*/
CGLM_INLINE
void
glm_cross(vec3 a, vec3 b, vec3 d) {
glm_vec_cross(a, b, d);
}
/*!
* @brief vec3 dot product
*
* this is just convenient wrapper
*
* @param[in] a vector1
* @param[in] b vector2
*
* @return dot product
*/
CGLM_INLINE
float
glm_dot(vec3 a, vec3 b) {
return glm_vec_dot(a, b);
}
/*!
* @brief normalize vec3 and store result in same vec
*
* this is just convenient wrapper
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_normalize(vec3 v) {
glm_vec_normalize(v);
}
/*!
* @brief normalize vec3 to dest
*
* this is just convenient wrapper
*
* @param[in] v source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_normalize_to(vec3 v, vec3 dest) {
glm_vec_normalize_to(v, dest);
}
#endif /* cglm_vec3_h */