Files
cglm/include/cglm-vec.h
2017-04-15 02:08:43 +03:00

543 lines
10 KiB
C

/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*!
* vec3 functions dont have suffix e.g glm_vec_dot (not glm_vec3_dot)
* all functions without suffix are vec3 functions
*/
#ifndef cglm_vec_h
#define cglm_vec_h
#include "cglm-common.h"
#include "cglm-vec-ext.h"
#include "arch/simd/cglm-intrin.h"
#include "cglm-util.h"
/*!
* @brief copy all members of [a] to [dest]
*
* @param[in] a source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec_copy(vec3 a, vec3 dest) {
dest[0] = a[0];
dest[1] = a[1];
dest[2] = a[2];
}
/*!
* @brief copy first 3 members of [a] to [dest]
*
* @param[in] a source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec4_copy3(vec4 a, vec3 dest) {
dest[0] = a[0];
dest[1] = a[1];
dest[2] = a[2];
}
/*!
* @brief copy all members of [a] to [dest]
*
* @param[in] a source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec4_copy(vec4 v, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(dest, _mm_load_ps(v));
#else
dest[0] = v[0];
dest[1] = v[1];
dest[2] = v[2];
dest[3] = v[3];
#endif
}
/*!
* @brief vec3 dot product
*
* @param[in] a
* @param[in] b
*
* @return dot product
*/
CGLM_INLINE
float
glm_vec_dot(vec3 a, vec3 b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
/*!
* @brief vec4 dot product
*
* @param[in] a
* @param[in] b
*
* @return dot product
*/
CGLM_INLINE
float
glm_vec4_dot(vec4 a, vec4 b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
}
/*!
* @brief vec3 cross product
*
* @param[in] a source 1
* @param[in] b source 2
* @param[out] d destination
*/
CGLM_INLINE
void
glm_vec_cross(vec3 a, vec3 b, vec3 d) {
/* (u2.v3 - u3.v2, u3.v1 - u1.v3, u1.v2 - u2.v1) */
d[0] = a[1] * b[2] - a[2] * b[1];
d[1] = a[2] * b[0] - a[0] * b[2];
d[2] = a[0] * b[1] - a[1] * b[0];
}
/*!
* @brief norm * norm (magnitude) of vec
*
* we can use this func instead of calling norm * norm, because it would call
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
* not good name for this func
*
* @param[in] vec vec
*
* @return norm * norm
*/
CGLM_INLINE
float
glm_vec_norm2(vec3 v) {
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
}
/*!
* @brief norm (magnitude) of vec3
*
* @param[in] vec
*
* @return norm
*/
CGLM_INLINE
float
glm_vec_norm(vec3 vec) {
return sqrtf(glm_vec_norm2(vec));
}
/*!
* @brief norm * norm (magnitude) of vec
*
* we can use this func instead of calling norm * norm, because it would call
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
* not good name for this func
*
* @param[in] vec vec4
*
* @return norm * norm
*/
CGLM_INLINE
float
glm_vec4_norm2(vec4 v) {
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2] + v[3] * v[3];
}
/*!
* @brief norm (magnitude) of vec4
*
* @param[in] vec
*
* @return norm
*/
CGLM_INLINE
float
glm_vec4_norm(vec4 vec) {
return sqrtf(glm_vec4_norm2(vec));
}
/*!
* @brief add v2 vector to v1 vector store result in dest
*
* @param[in] v1
* @param[in] v2
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec_add(vec3 v1, vec3 v2, vec3 dest) {
dest[0] = v1[0] + v2[0];
dest[1] = v1[1] + v2[1];
dest[2] = v1[2] + v2[2];
}
/*!
* @brief add v2 vector to v1 vector store result in dest
*
* @param[in] v1
* @param[in] v2
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec4_add(vec4 v1, vec4 v2, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(dest,
_mm_add_ps(_mm_load_ps(v1),
_mm_load_ps(v2)));
#else
dest[0] = v1[0] + v2[0];
dest[1] = v1[1] + v2[1];
dest[2] = v1[2] + v2[2];
dest[3] = v1[3] + v2[3];
#endif
}
/*!
* @brief subtract v2 vector from v1 vector store result in dest
*
* @param[in] v1
* @param[in] v2
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec_sub(vec3 v1, vec3 v2, vec3 dest) {
dest[0] = v1[0] - v2[0];
dest[1] = v1[1] - v2[1];
dest[2] = v1[2] - v2[2];
}
/*!
* @brief subtract v2 vector from v1 vector store result in dest
*
* @param[in] v1
* @param[in] v2
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec4_sub(vec4 v1, vec4 v2, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(dest,
_mm_sub_ps(_mm_load_ps(v1),
_mm_load_ps(v2)));
#else
dest[0] = v1[0] - v2[0];
dest[1] = v1[1] - v2[1];
dest[2] = v1[2] - v2[2];
dest[3] = v1[3] - v2[3];
#endif
}
/*!
* @brief multiply vec3 vector with scalar
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec_scale(vec3 v, float s, vec3 dest) {
dest[0] = v[0] * s;
dest[1] = v[1] * s;
dest[2] = v[2] * s;
}
/*!
* @brief flip sign of all vec3 members
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec_flipsign(vec3 v) {
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
/*!
* @brief flip sign of all vec4 members
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec4_flipsign(vec4 v) {
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(v, _mm_xor_ps(_mm_load_ps(v),
_mm_set1_ps(-0.0f)));
#else
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
v[3] = -v[3];
#endif
}
/*!
* @brief multiply vec4 vector with scalar
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec4_scale(vec4 v, float s, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(dest,
_mm_mul_ps(_mm_load_ps(v),
_mm_set1_ps(s)));
#else
dest[0] = v[0] * s;
dest[1] = v[1] * s;
dest[2] = v[2] * s;
dest[3] = v[3] * s;
#endif
}
/*!
* @brief normalize vec3 and store result in same vec
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec_normalize(vec3 v) {
float norm;
norm = glm_vec_norm(v);
if (norm == 0.0f) {
v[0] = v[1] = v[2] = 0.0f;
return;
}
glm_vec_scale(v, 1.0f / norm, v);
}
/*!
* @brief normalize vec4 and store result in same vec
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec4_normalize(vec4 v) {
float norm;
norm = glm_vec4_norm(v);
if (norm == 0.0f) {
v[0] = v[1] = v[2] = v[3] = 0.0f;
return;
}
glm_vec4_scale(v, 1.0f / norm, v);
}
/*!
* @brief normalize vec3 to dest
*
* @param[in] vec source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec_normalize_to(vec3 vec, vec3 dest) {
float norm;
norm = glm_vec_norm(vec);
if (norm == 0.0f) {
dest[0] = dest[1] = dest[2] = 0.0f;
return;
}
glm_vec_scale(vec, 1.0f / norm, dest);
}
/*!
* @brief normalize vec4 to dest
*
* @param[in] vec source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec4_normalize_to(vec4 vec, vec4 dest) {
float norm;
norm = glm_vec4_norm(vec);
if (norm == 0.0f) {
dest[0] = dest[1] = dest[2] = dest[3] = 0.0f;
return;
}
glm_vec4_scale(vec, 1.0f / norm, dest);
}
/*!
* @brief angle betwen two vector
*
* @return angle as radians
*/
CGLM_INLINE
float
glm_vec_angle(vec3 v1, vec3 v2) {
float norm;
/* maybe compiler generate approximation instruction (rcp) */
norm = 1.0f / (glm_vec_norm(v1) * glm_vec_norm(v2));
return acosf(glm_vec_dot(v1, v2) * norm);
}
CGLM_INLINE
void
glm_quatv(versor q,
float angle,
vec3 v);
/*!
* @brief rotate vec3 around axis by angle using Rodrigues' rotation formula
*
* @param[in, out] v vector
* @param[in] axis axis vector (must be unit vector)
* @param[in] angle angle by radians
*/
CGLM_INLINE
void
glm_vec_rotate(vec3 v, float angle, vec3 axis) {
versor q;
vec3 v1, v2, v3;
float c, s;
c = cosf(angle);
s = sinf(angle);
/* Right Hand, Rodrigues' rotation formula:
v = v*cos(t) + (kxv)sin(t) + k*(k.v)(1 - cos(t))
*/
/* quaternion */
glm_quatv(q, angle, v);
glm_vec_scale(v, c, v1);
glm_vec_cross(axis, v, v2);
glm_vec_scale(v2, s, v2);
glm_vec_scale(axis,
glm_vec_dot(axis, v) * (1.0f - c),
v3);
glm_vec_add(v1, v2, v1);
glm_vec_add(v1, v3, v);
}
/*!
* @brief apply rotation matrix to vector
*
* @param[in] m affine matrix or rot matrix
* @param[in] v vector
* @param[out] dest rotated vector
*/
CGLM_INLINE
void
glm_vec_rotate_m4(mat4 m, vec3 v, vec3 dest) {
vec3 res, x, y, z;
glm_vec_normalize_to(m[0], x);
glm_vec_normalize_to(m[1], y);
glm_vec_normalize_to(m[2], z);
res[0] = x[0] * v[0] + y[0] * v[1] + z[0] * v[2];
res[1] = x[1] * v[0] + y[1] * v[1] + z[1] * v[2];
res[2] = x[2] * v[0] + y[2] * v[1] + z[2] * v[2];
glm_vec_copy(res, dest);
}
/*!
* @brief project a vector onto b vector
*
* @param[in] a
* @param[in] b
* @param[out] dest projected vector
*/
CGLM_INLINE
void
glm_vec_proj(vec3 a, vec3 b, vec3 dest) {
glm_vec_scale(b,
glm_vec_dot(a, b) / glm_vec_norm2(b),
dest);
}
/**
* @brief find center point of two vector
*
* @param[in] v1
* @param[in] v2
* @param[out] dest center point
*/
CGLM_INLINE
void
glm_vec_center(vec3 v1, vec3 v2, vec3 dest) {
glm_vec_add(v1, v2, dest);
glm_vec_scale(dest, 0.5f, dest);
}
/**
* @brief distance between two vectors
*
* @param[in] v1
* @param[in] v2
* @return returns distance
*/
CGLM_INLINE
float
glm_vec_distance(vec3 v1, vec3 v2) {
return sqrtf(glm_pow2(v2[0] - v1[0])
+ glm_pow2(v2[1] - v1[1])
+ glm_pow2(v2[2] - v1[2]));
}
/**
* @brief distance between two vectors
*
* @param[in] v1
* @param[in] v2
* @return returns distance
*/
CGLM_INLINE
float
glm_vec4_distance(vec4 v1, vec4 v2) {
return sqrtf(glm_pow2(v2[0] - v1[0])
+ glm_pow2(v2[1] - v1[1])
+ glm_pow2(v2[2] - v1[2])
+ glm_pow2(v2[3] - v1[3]));
}
#endif /* cglm_vec_h */